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Review Article

Abstract
Advances in cytotoxic chemotherapy, surgical oncology, genomic medicine, targeted  
small molecule treatment, cancer immunotherapy and biology-driven precision radiation 
oncology have resulted in significant improvements in outcomes of cancer treatment,  
with an increasing number of patients achieving long-term disease control or even  
being potentially cured. Concurrent advances in palliative care and geriatric oncology  
have also helped to ensure that patients are managed holistically by considering their  
physical, social, psychological and emotional needs in a personalised manner.
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Introduction
The fight against cancer has been a protracted one that  
has claimed countless casualties across the millennia. 
Despite numerous advances in modern medicine, it  
remains a formidable enemy that has overtaken other 
ailments like infectious and heart diseases to become  
the leading cause of death worldwide, with an estimated 
9.6 million deaths in 2018 alone.1

Several analogies have been used for this fight against 
cancer, including that of a traditional battlefield, where 
the dreaded disease is seen as an invader while doctors 
and scientists use all the weapons in their arsenal against 
the onslaught. However, this analogy is flawed as cancer 
cells arise from normal cells and the battleground is 
the patient. We prefer the analogy of the fight against  
criminal gangs (the cancer) that arise in a city (the patient). 
The ‘criminals’ may arise because of genetic mutations 
(e.g. Li-Fraumeni syndrome) or due to exposure to a  
toxic neighbourhood environment (e.g. smoking and 
radiation), and start to proliferate with an intent to gain 

power and steal the resources of the city. There is a  
lot more finesse needed for this fight because an all-out 
battle could lay the entire city to waste.

Traditional Cytotoxic Chemotherapy
Traditional cytotoxic chemotherapy is akin to the heavy 
artillery used in battle. It hijacks the need for cancer 
cells to divide by sabotaging the mechanisms for DNA 
replication. However, normal cells that undergo cell 
division during chemotherapy would also be affected 
by this approach. Cells with the shortest cell cycles 
are those from the bone marrow, hair follicles, skin 
and gastrointestinal tract, which are therefore the most 
sensitive to the effects of chemotherapy. Hence, patients 
receiving cytotoxic chemotherapy commonly have hair 
loss, gastrointestinal symptoms, skin changes and a 
drop in blood counts.2 Moreover, while chemotherapy is 
moderately effective with cancers with a short replication 
time, it is less effective with tumours with a slow growth 
rate such as carcinoid tumours.3 Early attempts to reduce 
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the toxicity of chemotherapy with cytoprotective agents 
have not been overwhelmingly successful.4 In recent  
years, advancements in technology led to new methods 
to improve the efficacy of cytotoxic chemotherapy. For 
instance, CPX-351 (liposomal cytarabine-daunorubicin) 
is a new drug that has been designed to improve the 
efficacy over the traditional 7+3 cytarabine/daunorubicin 
chemotherapy regimen for patients with acute myeloid 
leukaemia (AML).5 In a Phase III clinical trial comparing 
CPX-351 with the traditional 7+3 regime, a greater 
proportion of patients achieved remission with CPX-
351 than with 7+3 (47.7% versus 33.3%, respectively;  
2-sided P=0.016).6 It has also shown to improve the 
patients’ quality of life7 and reduce drug exposure to non-
target tissues, which contributes to a more manageable 
safety profile.5

Despite the many side effects, cytotoxic chemotherapy 
is currently still a backbone used in the frontline  
treatment of many cancers like acute leukaemia, breast 
cancer, lymphoma, pancreatic cancer and many others. In 
fact, conventional cytotoxic chemotherapy still features 
very strongly in the treatment recommendations of the 
National Comprehensive Cancer Network for most cancers 
because of the excellent outcomes. 

Surgical Oncology
For many solid tumours, surgery remains the mainstay 
of curative therapy in situations where the tumour can 
be completely removed with wide and clear pathologic 
margins. Surgery also provides important pathological 
material through which one can study specific  
prognostic factors, markers or determine subtypes through 
molecular profiling. Furthermore, the principles of  
cancer surgery are based on concepts rooted in the 
biological basis of cancer invasion and metastases. 

The 2 most important principles in surgical oncology 
are as follows: first, to remove the tumour in its entirety 
with an adequate margin that is deemed clear from 
microscopic examination. For example, for skin cancer, 
it is well established that the surgical resection of basal 
cell carcinoma only requires a 5mm gross margin during 
surgery;8 this extends to 1cm in squamous cell cancers 
and early melanomas, and even wider to 2cm in thicker, 
more aggressive melanomas.9 Many of the margin 
recommendations are tumour- and tissue-specific, but 
are often also guided by the location of these cancers  
and the ability to obtain these margins without 
compromising form and function. For example, it is  
easy to obtain a wide 5cm margin in tumours arising 
from the colon, but this becomes more challenging 
in low rectal cancers, where there may be a desire to 

spare the anal sphincter for continence. The second 
major principle in cancer surgery (especially epithelial  
cancers/carcinomas) is the need to address regional  
nodal stations. The principle of removing nodal stations 
requires an approach to remove these by block dissection 
techniques (as opposed to ‘cherry picking’ individual 
nodes), and these are planned in a stepwise manner based 
on nodal stations. The latter concept varies depending  
on the cancer type, but in breast cancer and melanomas,  
the concept of sentinel node dictates that tumours 
metastasise to one or a few nodes first, before then 
progressing to subsequent echelons, and hence  
removing and testing the sentinel node gives important 
information as to whether the tumour has metastatic 
potential.10 However, in many cancers such as gastric  
or head and neck cancers, this ‘stepwise metastasis’ 
model is not as clear-cut, and nodal dissection is based 
on anatomic levels or ‘distance’ from the primary tumour 
and carried out in a systematic en bloc manner, ensuring 
comprehensive nodal clearance for the levels cleared.11

Recently, another surgical concept gaining popularity 
is surgical resection for oligometastatic disease where 
resection can be conducted en bloc, removing the tumour 
with an adequate margin and if necessary, dealing with 
regional nodal disease. These are commonly performed  
in limited liver or lung metastases,12,13 but also for  
metastasis to non-standard nodal stations14 (e.g. 
cervical nodes for breast cancer). There are limited 
studies supporting this practice, but it is acceptable if 
it is technically feasible, does not compromise organ  
functions and there is a relatively long disease-free  
interval between the original cancer and metastasis.15 
These types of surgery are usually limited to specific 
cancer types where there is good supporting data (e.g. 
colorectal cancer with liver or lung metastasis, renal 
cell cancers with isolated metastasis, breast cancer with 
supraclavicular nodal metastasis).12,16-18 The ability to 
combine these with newer modalities of treatment, 
such as targeted and immunotherapy or even proton 
beam therapy, makes this the most important aspect of  
surgical oncology research in the near future.

G e n o m i c  M e d i c i n e  a n d  Ta r g e t e d  S m a l l  
Molecule Treatment
Cancer geneticists are the ‘spies’ who provide 
cancer intelligence to help unravel the workings and  
weaknesses of the enemy by discovering genes found 
to be mutated in specific malignancies. These mutations 
can be either somatic or inherited, and can lead to 
the development of a specific cancer or contribute to  
resistance to therapy. Approaches developed to target  
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Tyrosine kinase inhibitors (TKIs) are small molecule 
drugs that target specific tyrosine kinase enzymes, which 
are upregulated in some cancers. Imatinib is a TKI used 
to treat chronic myeloid leukaemia (CML), cancers that 
are caused by the mutated bcr-abl protein and cancers 
caused by c-KIT mutations (e.g. gastrointestinal stromal 
tumour, acute myeloid leukaemia). It has proven to be 
much less toxic while being highly efficacious compared  
to cytotoxic chemotherapy alone24 or combination therapy 
of interferon alpha with low-dose cytarabine.25 These 
findings have emplaced TKIs as standard of care for  
patients with CML.26 Gefitinib is a TKI that has been used 
to treat cancers caused by a mutated EGFR gene, and  
has shown in clinical trials to be highly effective against 
cancers driven by such mutations.27 In a Phase II trial 
conducted using Gefitinib as a treatment for non-small  
cell lung cancer (NSCLC) with EGFR mutations, it was 
found that its response rate was relatively higher with 
less toxicity as compared to conventional cytotoxic 
chemotherapy.28 While its ease of administration, 
promising results and favourable toxicity have led to a 
rise in the use of TKIs,29 the problem of eventual acquired 
resistance limits the efficacy of TKIs, which is exacerbated 
by the relatively fast rates at which patients develop 
resistance.30 While there have been effective second- and 
third-generation TKIs developed to target this problem, 
the eventual resistance to these next-generation TKIs 
limits its efficacy. 

The discovery that defects in the ubiquitin-proteasome 
pathway are associated with certain types of cancer31 
led to the development of proteasome inhibitors as a 
potential cancer treatment. Bortezomib is a first-generation 
proteasome inhibitor used in the treatment of multiple 
myeloma, and is commonly used in conjunction with 
other agents to improve clinical outcomes in myeloma 
as well as other lymphoid malignancies.32,33 Carfilzomib 
is a second-generation proteasome inhibitor that is also 
used to treat multiple type myeloma. In clinical trials 
comparing the use of Carfilzomib plus dexamethasone  
with Bortezomib and dexamethasone, the use of  
Carfilzomib plus dexamethasone was found to be 
superior (Progression Free Survival (PFS) of 18.7 versus  
9.4 months).34 

Cancer Immunotherapy
Cancer immunotherapy aims to amplify the body’s  
immune response against cancer with different methods, 
such as the use of monoclonal antibodies, adoptive  
T cell therapy, as well as non-specific immunotherapies 
(Fig. 1). Other strategies like therapeutic cancer  
vaccines, cytokine therapy, natural killer (NK) cell  

these mutations have revolutionised cancer care by 
maximising efficacy while reducing the side effects 
of treatment. This has been accomplished through  
increased genetic and genomic testing, which focuses 
on somatic and inherited mutations, respectively. 
Technological advancements have given rise to next-
generation sequencing (NGS), which allows for a more 
cost-effective and rapid sequencing of DNA and RNA. 
Using NGS, studies have found the presence of specific 
driver alterations found in various different types of 
tumours,19 which may lead to the development of cancer 
therapies targeting multiple tumour types. NGS has 
numerous platforms with various characteristics—such as 
differences in sequencing speed or cost—and healthcare 
institutions can select one or more platforms that most 
suit their needs. A strategy of upfront identification 
of hotspot mutations with selection of targeted cases 
for comprehensive genomic profiling is reasonable.20 
However, for NGS to become a more widely used tool, 
it will be important to address its lack of accessibility,21 
as well as the cost concerns of the drugs used to target 
the potential mutations found through the use of NGS. 
Another significant limitation facing NGS of tumours 
is that it cannot distinguish between tumour-specific 
somatic mutations and the patient’s germline mutations.22 
To properly identify specific somatic driver alterations, 
additional genetic testing that identifies germline  
mutations needs to be conducted to deduct these  
germline mutations from the somatic mutations.  
However, germline testing might be difficult to  
implement owing to strict guidelines on their use, 
which may result in difficulty in identifying specific 
somatic driver mutations. To combat this problem, it is  
imperative for more medical professionals to be trained 
in performing both genomic and genetic tests, and to 
encourage them to obtain qualifications to perform  
these procedures. 

Targeted small molecule treatment
Knowledge of the molecular workings of cells and 
cancer eventually led to the development of targeted 
therapies, which target specific intracellular pathways 
or mutant proteins that drive the progression of  
cancer. Further developments in sequencing techniques 
have led to a greater understanding of the genes  
associated with cancer development. In particular,  
targeting mutations with inhibitors of the mutant 
gene products has allowed for great advancements in  
targeted therapies.23 This has prompted scientists and 
clinicians to identify cancer-causing genes, and led  
to the development of biomarkers, as well as specific 
drugs, to target these mutant genes. 
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therapy and oncolytic virus therapy have modest  
response rates at present, and need more optimisation.35

Monoc lona l  an t ibod ie s ,  i nc lud ing  immune  
checkpoint therapy
Monoclonal antibodies are like targeted missiles that 
seek out specific receptors on the cancer cells to destroy  
them. Rituximab is an engineered monoclonal antibody 
against CD20 on B cells that has proved tremendously 
effective in patients with B cell lymphomas, and is now 
a backbone in lymphoma therapy. Trastuzumab is an 
antibody against the HER2 receptor on some breast  
cancers, and around US$7 billion is spent worldwide 
annually on this drug. Over 47 types of monoclonal 
antibodies are now in use in oncology,36 with new 
ones being added to the inventory each year. While  
therapeutic monoclonal antibodies like Rituximab and 
Trastuzumab have improved the prognosis of many 
patients undergoing cancer treatment, they are expensive 
and therefore inaccessible to some patients (e.g. average 
wholesale price of Rituximab per 500mg = US$5,211.78).37 
Multiple biosimilars of these monoclonal antibodies 
have been developed, such as Rituxirel, which is an 
approved Rituximab biosimilar that costs up to 84%  

less than Rituximab.38 With monoclonal antibodies  
playing a large part in the fight against cancer, it is likely 
that the development of their biosimilars will have a big 
role in reducing costs and improving global access to 
monoclonal antibody therapy. 

Monoclonal antibodies are also used in immune 
checkpoint therapy, whereby a specific antibody is 
used to target immune checkpoints, which tumour 
cells utilise to evade the immune system’s antitumour 
response. Immune checkpoint inhibitors (ICIs) work by  
amplifying antitumour immune responses by interrupting 
co-inhibitory signalling pathways and promoting the 
immune-mediated elimination of cancer cells. Clinical 
trials on ICIs showed an improvement in survival in 
cancer patients, which has contributed to rapid Food 
and Drug Administration regulatory approvals for 
various types of cancers, such as malignant melanoma,  
Hodgkin’s lymphoma and bladder cancer.39 Currently, 
CTLA-4, PD-1 and PD-L1 are the most commonly  
targeted immune checkpoints.

Ipilimumab is an ICI that binds to CTLA 4, which 
is a protein receptor present in T cells. Recent clinical 
trials have proven the effectiveness of Ipilimumab in  
increasing overall survival in patients with advanced 

Fig. 1. Selected approaches to cancer immunotherapy include tumour-specific monoclonal antibodies (including checkpoint blockade) and targeting the tumour 
microenvironment, as well as engineered T cells (which include CAR T cells, modified TCRs and TILs) and other engineered cells (NK and dendritic cells).
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melanoma,40 and it has been used in conjunction with 
other therapies to treat advanced melanoma.41 Following 
the approval of Ipilimumab in 2011, other ICIs have been 
approved for use in various types of cancers, such as 
Nivolumab, a PD-1 inhibitor, and Atezolizumab, a PD-L1 
inhibitor.42 Immune-checkpoint therapy has provided an 
increasing number of patients with achieving long-term 
disease control, as compared to conventional cytotoxic 
chemotherapy alone.43 Despite the effectiveness of  
immune-checkpoint therapy, a large proportion of  
patients develop side effects (72% with ipilimumab 
monotherapy and 66% with anti-PD-1/anti-PD-L1 
monotherapy).44 As such, it is imperative to research on 
methods to manage the toxicities they cause to improve 
the patient’s quality of life during treatment and also to 
prevent toxicity-related deaths. 

Adoptive T cell therapy (ACT)
T cells are the ‘policemen’ of the body’s immune  
system. They circulate throughout the body looking for 
potential foreign cells, as well as cells that have changed 
and become errant (like cancer cells). When they detect 
abnormal cells, they attack the defective cell while also 
sending an alert signal to other cells (B cells, natural 
killer cells and other T cells) to counter the enemy.  
T cells engineered to target cancer cells include chimeric 
antigen receptor (CAR) T cells, modified T cell receptor 
(TCR) cells and tumour infiltrating lymphocytes (TILs). 

CAR T cells are T cells that are genetically engineered 
to express a novel receptor on the cell surface specific for 
antigens present on the tumour cell surface. This allows 
the engineered T cells to recognise tumour cells and  
target them. Clinical trials have shown CAR T cell therapy 
to be relatively effective against B cell malignancies, such 
as acute lymphoblastic leukaemia, B cell lymphomas and 
multiple myeloma.45,46 Though they are useful in treating 
some solid tumours, the percentage of patients with  
complete response to CAR T cell therapy is much higher 
in patients with haematologic cancers (24.4% to 54.4%) 
as compared to solid tumours (4.1%).47 TCR cells, 
with their ability to recognise intracellular antigens, 
could be more effective for solid tumours. Currently, 
the use of CAR T cell therapy is still limited by the 
need for highly specialised centres and the high cost of  
treatment (ranging from US$373,000 to $475,000),48  
with an exceedingly high base-case incremental  
cost-effectiveness ratio.49

Tumour-infiltrating leucocytes (TILs) are T cells that 
have infiltrated the stroma of the tumour, suggesting 
some form of immune recognition for the cancer cells. 
TIL therapy makes use of this characteristic by extracting 
these cells from the tumour, replicating them ex vivo, 

and then transferring these cells back into the patient 
alongside a high dose of interleukin-2 (IL-2). Reports 
have shown that this treatment has been effective against 
multiple types of cancers, including melanomas,50 cervical 
cancers51 and ovarian cancer.52 A phase III trial showed a 
3-year survival rate of 32–55%,53,54 as well as complete 
response in 10–25% of highly advanced melanoma  
patients who were unresponsive to previous treatments.55 

There is much promise in the potential for TILs to treat 
patients who may see little improvement from traditional 
cytotoxic chemotherapy. However, more research should 
be done to establish the effectiveness of TIL therapy 
on other types of cancers, and methods to make TIL  
therapy more accessible to a larger group of patients. 

Stromal Cells and the Tumour Microenvironment
In the same way that a difficult neighbourhood can result 
in the emergence of criminal elements, a defective stromal 
microenvironment can trigger and promote the development 
of cancer cells. This altered microenvironment further 
protects the tumour against the immune system through 
fibroblast secretions and other mechanisms. Elimination 
of cancer cells also requires targeting of the tumour 
microenvironment to make conditions favourable to  
normal cells and unfavourable for the malignancy. One such 
strategy proposed is the use of hypomethylating agents to 
modify the bone marrow microenvironment in patients 
with myelodysplastic syndrome.56

Cancer-associated fibroblasts
A group of cells that cause this defective tumour  
environment is the cancer-associated fibroblasts 
(CAFs). CAFs are known to be derived from tissue-
resident fibroblasts57 that are activated by the tumour 
microenvironment.58 CAFs are able to not only promote 
tumourigenesis,59 but also cause the tumours to be more 
difficult to treat and aggressive.60 This is known to be 
caused by the release of various substances such as 
cytokines, growth factors and exosomes, which promote 
angiogenesis,59 metastasis61 and increased resistance  
against both chemotherapy and radiotherapy.62 CAFs 
are also known to exert an immunosuppressive action 
by preventing the infiltration of CD8+ T cells into the  
tumour by remodelling the extracellular matrix63 and 
promoting tumour vasculature. Reports have shown that  
the removal of CAFs led to tumour regression with 
immunogenic tumours,64 although there are also  
significant side effects due to the lack of specificity of  
the treatment,65 causing damage to surrounding healthy 
cells. It is therefore crucial to develop a marker specific 
to CAFs such that these cells can be directly targeted  
and destroyed while minimising harm to other cells. 
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Transforming growth factor beta
Transforming Growth Factor Beta (TGFβ) is a cytokine 
produced mainly by CAFs66 that modulates processes  
such as cell invasion, immune regulation and 
microenvironment.67 Hence, the malfunctioning of this 
pathway can lead to the proliferation of cancer cells.  
When cancer cells lose TGFβ tumour-suppressive  
responses, they can use TGFβ to their advantage to 
initiate immune evasion, differentiation into an invasive  
phenotype, and promote metastasis.67,68 Galunisertib, 
a TGFβ inhibitor, was shown in a trial to considerably  
reduce tumour burden when used alone, and was able to 
eradicate most metastases and prolong recurrence-free 
survival even a year after the end of treatment, when it 
was used alongside anti-PD-L1 therapy.66 Other trials 
have also reported synergy between anti-PD-L1 therapy 
and TGF inhibitors,69 which makes this treatment strategy 
very promising.

Radiation Oncology
Radiation therapy is commonly used to treat multiple  
types of cancer, either alone or together with other 
cancer therapies, such as surgery, immunotherapy and 
chemotherapy. For instance, chemotherapy has been 
commonly used in conjunction with radiotherapy with a 
curative intent in head and neck70 as well as lung cancers.71 
Radiotherapy works by directing ionising radiation at the 
patient’s tumour, damaging the DNA of the cancer cells  
and killing them. However, radiotherapy often results in 
long-term side effects, such as hypothyroidism,72 heart 
disease,73 facial abnormalities,74 or even secondary cancers.75 

Currently, photon beam therapy is the most prevalent  
form of radiation therapy. Recent technological 
advancements have helped reduce treatment time,76 
increase the radiation dose conformity and improve 
accuracy when using photon radiotherapy.76,77 These 
advancements enable the tumour to be targeted more 
specifically, while sparing surrounding tissue, which has 
undoubtedly contributed to making radiotherapy safer 
and reducing its side effects. 

Recently, a new promising technology that is being 
explored is proton therapy. Proton therapy works  
similarly to conventional photon radiotherapy—by 
delivering ionising radiation to cancer cells and thereby 
killing them. However, proton therapy has the advantage 
of greater potential for a higher dose conformity than 
photon therapy,78 as it deposits most of its energy over 
a narrower range.79 However, proton therapy is limited 
due to the high costs of building and maintaining  
proton therapy treatment machinery,80 and is therefore  
not widely available. Nevertheless, patients, especially 
young children, could be spared a life time of more  

serious side effects of less targeted radiotherapy,  
conferring potential long-term benefits.81

Biology-driven precision radiation oncology could  
help address the differing biological features of  
different tumours, which affect their radiosensitivity.82 
However, the discovery of more suitable biomarkers83  
and conducting of more clinical trials84 must be done  
to establish its effectiveness, and to explore the  
possible integration of proton beam therapy with  
biological knowledge of tumour sensitivity.

Palliative Oncology
Cancer can have a wide range of physical and emotional 
effects, due not only to severe illness, but also the 
potential side effects of its treatments. In fact, patients 
with advanced cancer benefit from early palliative 
care from interdisciplinary palliative care teams while  
receiving active treatment.85 Patients who receive  
palliative care not only had reduced healthcare costs,86 
but also an improved quality of life, better symptom 
management,85 as well as better caregiver outcomes.87 
Results from clinical trials show there is greater benefit 
from early palliative care referrals as compared to  
delayed referrals.88 Hence, it is important for palliative 
care to be integrated into standard oncological care right 
from diagnosis, to help meet the needs of both patients 
and their family members or care givers (Fig. 2). 

It is imperative for healthcare professionals who are 
involved in the care of cancer patients to learn primary 
palliative care skills,89 so as to address basic palliative  
care needs, given the strong evidence that supports 
palliative care on top of standard oncology care.90  
Palliative care provides much needed support to  
the patients and their family members, reducing the 
symptomatic, emotional and devastation brought about 
by the illness.

Geriatric Oncology
Sixty percent of all cases with cancer and 70% of 
cancer-related deaths occur in patients aged 65 years 
and over.91 It is therefore critical to develop a specific 
treatment plan for older cancer patients that takes into 
account their additional needs due to the physiological 
changes of old age. To accomplish this, a comprehensive 
geriatric assessment (CGA) should be conducted on all 
older patients with cancer. CGA can be performed in 
half an hour92 and the information from the assessment 
can be used to tailor the appropriate treatment for the 
patient, optimise his or her care, and provide important 
prognostic information. What tools a CGA should 
comprise still remain largely debatable, but there is a 
specific set of domains (Fig. 3) that should be part of this 
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Fig. 2. Evolution of Supportive Care into the Continuum of Cancer Care (where the x-axis represents the time of cancer progression). Supportive and  
palliative care should be made available to all cancer patients who are undergoing active cancer treatment including after active anticancer treatment is  
stopped. Palliative care considers the psychological needs of caregivers and therefore helps to ease the transition into bereavement care. 

Fig. 3. The key domains that are part of Comprehensive Geriatric Assessments (CGA). CGA can detect problems 
that are not detected in routine history and physical examinations, due to the tools in this assessment being more 
specific to the needs of the elderly. The information from the CGA can be used to tailor the appropriate treatment for 
the patient, optimise their care and provide important prognostic information as well. 
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assessment, namely functional status, fatigue, comorbidity,  
cognition, mental health status, social support, nutrition  
and geriatric syndromes.93 CGA parameters have been 
shown to be predictive of the risk of severe treatment-
related toxicity94 and mortality,95 which may signal to 
oncologists if there is a need to modify the therapeutic 
approach to prevent treatment-related complications,  
such as by providing less aggressive treatment  
methods. For example, based on the key domains of a 
comprehensive CGA provided in Figure 3, the physician 
is able to make recommendations such as the control 
of blood pressure, discontinuation of specific drugs, or 
the referral to a dietitian. A Cancer and Aging Research 
Group chemotoxicity score may also be calculated, as 
well as make an assessment/prediction of the risk of  
grade 3 or higher toxicity from chemotherapy. To best 
utilise the information from the CGA, a multidisciplinary 
team is needed to address the issues it detects. For  
instance, patients with cognitive impairment may be 
referred to a memory clinic, or pharmacists can check 
for possible drug interactions with medications used to 
treat other geriatric conditions. The subsequent changes 
in treatment plan may help to improve overall survival. 
Given that a significant proportion of cancer patients 
are older adults, it is evident that the CGA will have an 
important role to play in the fight against cancer. 

Conclusion
Advances in cytotoxic chemotherapy, surgical oncology, 
genomic medicine, targeted small molecule treatment, 
cancer immunotherapy and biology-driven precision 
radiation oncology have resulted in significant 
improvements in outcomes of cancer treatment, with 
an increasing number of patients achieving long-
term disease control or even being potentially cured.  
Concurrent advances in palliative care and geriatric 
oncology have also helped to ensure that patients are 
managed in a holistic manner by considering their 
physical, social, psychological and emotional needs in a 
personalised manner.  
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