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The real-world application of artificial intelligence (AI), 
machine learning (ML) and deep learning (DL), have 
generated significant interest throughout the computer 
science and medical communities in recent years. This 
interest has been accompanied by no small amount of 
hype. Though the term ‘ML’ was coined 50 years ago by 
Arthur Samuel, who stated that machines should have the 
ability to learn without being programmed,1 the advent 
of the graphics processing unit (GPU) has enabled much 
improved processing power and enabled new possibilities 
with AI. DL—an approach that utilises multiple neural 
networks to learn representation of data using multiple 
levels of abstraction2—has revolutionised the computer 
vision field, and achieved substantial jumps in diagnostic 
performance for image recognition, speech recognition, and 
natural language processing.2 In the technical world, DL 
has been heavily used in autonomous vehicles,3 gaming4,5 

and numerous smart phone applications. The availability 
of different software (e.g. Caffe, Tensorflow), and the off-
the-shelf convolutional neural networks (e.g. AlexNet, 
VGGNet, ResNet and GoogleNet) have removed barriers 
to entry for many academics and clinicians, resulting in 
the recent surge of interest within the medical settings. 
To date, this technique has shown promising diagnostic 
performance, across specialties including ophthalmology 
(e.g. detection of diabetic retinopathy [DR], glaucoma and 
age-related macular degeneration from fundus photographs 
and optical coherence tomographs),6-11 radiology (e.g. 
detection of tuberculosis from chest X-rays [CXRs], 
intracranial haemorrhage from computed tomography of 
the brain),12-15 and dermatology (e.g. detection of malignant 
melanoma from skin photographs).16 

DL is a tool that can, when applied effectively, serve 
multiple roles in different medical settings. Examples of  this 
include screening, triaging referral urgency, prognosticating 
and monitoring diseases progression. In order to increase the 
explainability of the outcome, many of the more recent DL 

1Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
2Duke-NUS Medical School, National University of Singapore, Singapore
3Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
4Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
5DeepMind, London, United Kingdom
Address for Correspondence: Asst/Prof Daniel Ting Shu Wei, Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital Avenue, 
Singapore 168751. 
Email: daniel.ting.s.w@singhealth.com.sg

systems experiment with attempts to visualise the decision 
process. Examples include demonstrating disease activities 
via heat maps,10 and displaying pathological features with 
image segmentation. With such abilities, this may help to 
increase the DL systems’ adoption rate by physicians and 
their acceptability by patients. 

In ophthalmology, one of the most promising areas is DR 
screening. Globally, 600 million people will have diabetes 
by 2040; a third will develop DR.17 Given the increasing 
prevalence of diabetes and ageing population, DR screening 
programmes are constantly challenged by issues related 
to implementation, availability of human assessors and 
long-term financial sustainability.18 In order to rectify the 
manpower shortage, DL systems can be an alternative DR 
screening tool. In 2016, both Gulshan et al and Abramoff 
et al reported excellent diagnostic performances of the DL 
systems in detecting referable DR using publicly available 
datasets, with area under the receivers’ operating curves 
(ROCs) (AUC) of >0.95 in both studies.8,19 Ting and co-
workers have also developed and tested a DL system for 
identifying DR, and related eye diseases using nearly half 
a million images from multiethnic community, population-
based and clinical datasets.7 Consistent with the minimum 
screening performance (sensitivity of at least 80%) set by 
the Diabetes United Kingdom,20 the diagnostic performance 
of this DL system was clinically acceptable with AUC 
of >90%, sensitivity of >90% and specificities >85% for 
referable DR, vision-threatening DR, glaucoma suspect 
and age-related macular degeneration. More importantly, 
this DL system was also tested on 10 external datasets, 
consisting of multiple ethnicities and settings (by patients’ 
demographics and glycaemic control, status of pupil dilation, 
retinal cameras and width of field for retinal images), 
using diverse reference standards in DR assessment by 
professional graders, optometrists or retinal specialists. In 
order to ensure generalisability, it is always important to 
test a DL system on previously unseen datasets. A similar 
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example was demonstrated by Abramoff et al in a recent 
United States Food and Drug Administration (US FDA)-
approved autonomous DR detection software – IDx, which 
was tested in prospective clinical trials in the US.21 Thus, DL 
systems for DR can potentially be deployed in the countries 
with and without existing DR screening programmes, as 
semi-automated or fully-automated models, with the aim 
to prevent DR-related visual impairment for the global 
population with diabetes worldwide.

Skin cancer is another major public health concern.22 In 
the US, it is estimated that approximately 9000 people are 
dying from melanoma each year, with $3.3 billion of skin 
cancer treatment costs attributable to skin melanoma.23 
Given the shortage of dermatologists, a DL system may 
be an alternative solution for this. Esteva et al reported 
a robust, dermatologist-level comparable DL system for 
detection of skin cancer.16 Using a dataset of 129,450 clinical 
images with 2032 different diseases, this DL system was 
tested against 21 board-certified dermatologists on biopsy-
proven clinical images (photographic and dermoscopic 
images) for 2 groups – keratinocyte carcinomas (the most 
common cancer) versus benign seborrhoeic keratosis; and 
malignant melanomas (the deadliest skin cancer) versus 
benign nevi. This DL system showed on par diagnostic 
performance with all tested dermatologists, with AUC of 
>0.90 for keratinocyte carcinoma (skin photographs) and 
melanoma (skin photographs and dermoscopic images). 
Future research is beneficial to assess the cost-effectiveness 
of this DL system for patients with skin lesions. 

Pulmonary tuberculosis (TB) is an infectious disease 
that poses a significant public health problem, causing 
1.5 million deaths worldwide in 2013.24 CXRs play an 
important role in screening and diagnosis of pulmonary TB, 
but their interpretation requires radiological expertise and 
is resource-intensive, particularly in developing countries.  
As such, there has been interest in the development of 
effective automated DL methods for detection and diagnosis 
of pulmonary TB from CXRs. Both Lakhani et al and 
Hwang et al have reported good diagnostic performance in 
using DL systems for detection of TB.12,13 Using AlexNet 
and GoogLeNet, Lakhani and co-worker reported an 
AUC of 0.99 in detection of TB in a dataset consisting of 
approximately 1000 CXRs.12 The testing dataset for this 
study, however, may be underpowered.25 Using a much 
larger sample size (approximately 60,000 CXRs), Hwang 
et al, recently, also reported a robust DL system to detect 
TB (AUC = 0.988), with the ability to localise abnormal 
lesions (AUC = 0.977). The reference standard consists of 15 
readers—5 non-radiology physicians, 5 general radiologists 
and 5 thoracic radiologists. This robust performance, again, 
showed consistency in 6 external datasets (4 Korean datasets, 
1 US dataset, and 1 Chinese dataset), with AUC of >0.97. 

This study is a good example to emphasise the importance 
of  having multiple reference standards, independent datasets 
and the ability to localise the disease activity areas. The 
algorithm published in this paper can be tested via the 
website, https://insight.lunit.io/.

Aside from screening, the DL system has been reported 
to be a robust tool to triage the urgency of referrals to the 
tertiary healthcare settings. Earlier this year, DeepMind 
and Moorfields Eye Hospital delineated 15 different 
retinal morphologic features from retinal optical coherence 
tomography scans, using a 2-stage convolutional neural 
network (CNN) architecture consisting of separate 
segmentation and classification networks. This DL system 
has excellent ability (AUC >0.90) to make a referral triage 
decision from 4 categories (urgent, semi-urgent, routine, 
observation), and classifies the presence of 10 different 
retinal diseases.26 This DL system may be a useful clinical 
tool to be implemented in the rapid access “virtual” clinics 
that are now widely used for triaging of macular disease in 
the United Kingdom.27

In this issue, a review by Liew et al describes the role 
of AI in radiology with a focus on the Singapore setting.28 
AI expands beyond helping or substituting human work, 
to extracting quantitative information for clinical decision-
making and prognosis prediction; the authors provide a 
comprehensive commentary of the willingness of local 
radiologists to work together and collaborate with key 
stakeholders within the context of our “smart nation”. 
This timely review and its declaration of intention to 
embrace the science and implementation of new tools is a 
laudable first step, and should perhaps also be expanded 
to take into account other promising techniques being 
added to the toolkit of diagnostic imaging to contribute to 
precision medicine. In radiology, an emerging technique 
is the so-called “radiomics”, where high-dimensional 
numeric information is extracted from the medical image 
and put into ML to non-invasively predict relevant clinical 
information. For example, glioma (the most common 
primary tumour) and glioblastoma (a grade IV glioma 
and the most malignant glioma), have poor prognosis with 
median survival of only 18 months, making early correct 
diagnosis and prognosis prediction important. It has been 
reported that radiomics showed excellent performance 
(AUC >0.90) in preoperatively differentiating confusing 
cases of glioblastoma and primary central nervous system 
lymphoma (PCNSL) which may show similar magnetic 
resonance imaging (MRI) findings but have different 
treatment strategies.29 Bae et al reported that radiomics can 
improve prognosis of glioblastoma beyond the established 
prognostic factors including clinical and molecular subtype 
information. In this study, when radiomics models were 
trained with MRI-based radiomic features using random 
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survival forest on training cohort (n = 163) and integrated 
into clinical and molecular information, the prognostication 
improved (integrated area under the time-dependent ROC 
curve showed improved performance on the test set [n = 
54], integrated area under the time-dependent ROC curve, 
0.696 vs 0.782, P = 0.04) for overall survival prediction.30 

Radiomics is recently evolving from extracting handcrafted 
features based on specific equations, to automatically extract 
and train the algorithm by CNN. Chang et al reported that 
residual network can predict isocitrate dehydrogenase 
in grade II to IV gliomas, a major molecular subtype for 
treatment response and prognosis.31 In this study, multiplanar 
preoperative MR images were put into the 34-layer residual 
network and trained, validated and tested on a total of 496 
multicentre patients, yielding excellent performance (AUC 
= 0.94, accuracy = 95.7%).

DL methods may be employed to predict features and 
pathologies beyond those conventionally used in clinical 
practice. Poplin et al recently reported an interesting DL 
system used to predict cardiovascular risk factors (e.g. age, 
gender, blood pressure) from fundus photographs.32,33 Along 
with convolutional neural network, the recurrent neural 
network can be applied for natural language processing, 
analysing the longitudinal medical record to predict in-
hospital mortality, 30-day unplanned readmission, prolonged 
length of stay, and all of a patient’s final discharge diagnoses.34

Although DL systems have been reported to have robust 
performances in different clinical settings, many limitations 
still exist in the literature in terms of safe integration into 
practice. For example, there have been many studies 
investigating plain film X-ray, but most are limited to a binary 
classification between normal and one disease or grade in 
a certain disease. Where studies investigate larger numbers 
of disease classes, reported accuracy tends to be lower.35 
The imageability (also known as gradability) also remains 
as a challenging aspect in any DL system. Most studies 
have trained and validated with good quality photographs, 
yielding robust diagnostic performance (AUC >0.90). One 
given algorithm can yield variable performance, depending 
on the quality of input data. For example, MRI can vary 
according to the scan protocol or vendor manufacturer 
(e.g. 1.5T vs 3T, or Philips vs Siemens), thus affecting 
the performance. One also needs to be mindful about the 
concept of “garbage in and garbage out”. In other words, 
even in the most robust convolutional neural network, the 
accuracy of the teaching datasets ground truth is perhaps 
the most important consideration in a study. To assure 
reproducibility and generalisability, larger training sample 
size, validation on more variable study cohort, and sharing 
details and even codes of preprocessing and training 
algorithm are mandatory.10 As such, the radiomic quality 
score (RQS) system has been published to measure the 

quality of radiomics study, allowing the description of the 
details of image processing pipeline, training algorithms, 
the characteristics, and inclusion/exclusion criteria of the 
study cohort.36 

In summary, AI using DL is a promising novel state-
of-art technology for the medical world. And it is crucial 
that we, as a community, ensure a robust training datasets 
with reliable ground truths and to test the implementation 
of these models in clinical practice. The formation of the 
Radiological AI, Data Science and Imaging Informatics 
(RADII) under the Singapore Radiological Society is a good 
platform to gather all stakeholders from the clinical and 
ML community.28 Although there are still many challenges 
that need to be solved prior to the mass AI adoption in 
healthcare, it is important for physicians to collaborate 
widely,37 aiming to improve the work efficiency and the 
access to tertiary health, from Singapore, and potentially 
to the global setting.  
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