Oculopharyngeal Muscular Dystrophy in Singapore: Not So Rare

Dear Editor,

Oculopharyngeal muscular dystrophy (OPMD) is a late onset, inherited muscle disease, characterised by ptosis, dysphagia, variable proximal limb weakness and slow progression.1-3 The highest reported prevalence is amongst Bukhara Jews (Israel; 1:600) and French Canadians (1:1000). Amongst East Asians, OPMD is thought to be rare.4,5 The risk of misdiagnosis remains high, particularly when family history is not available, or symptoms are mild or isolated. Typically, diagnosis may be delayed for 3 to 20 years, with most patients undergoing extensive investigations and treatment for other suspected neurological conditions.6,7 There have been a few reports from China, Taiwan, Hong Kong and Japan, with a small number of genetically confirmed OPMD cases from Southeast Asia (Thailand, Malaysia).8-14 A previous case report from Singapore (1993) described a single patient, in whom OPMD was diagnosed clinically, with no genetic confirmation.15 Under-recognition of OPMD may be one of the causes of the assumed rarity of OPMD in East Asia. Here, we describe 4 unrelated patients from Singapore diagnosed with OPMD over the past 4 years.

Case 1: A 67-year-old Chinese gentleman presented with progressive ptosis since his 30s (Fig. 1), as well as progressive dysphagia and dysphonia for 5 years. Investigations are summarised in Table 1. Family history, which was not apparent prior to diagnosis, was notable for similar symptoms in approximately 20 family members living overseas, including his father and paternal grandfather. Mitochondrial cytopathy was initially considered, and muscle biopsy was performed (left biceps brachii muscle); needle electromyography of the contralateral biceps brachii muscle showed subpopulations of myopathic motor units. Subtle mitochondrial abnormalities were evident, with no rimmed vacuoles observed (Fig. 2). Genetic screening for OPMD showed heterozygous expansion of (GCN) in PABPN1 (13 repeats).

Case 2: A 52-year-old Chinese gentleman presented with progressive, bilateral, asymmetrical ptosis for at least 10 years, and progressive dysphagia and dysphonia for 5 years. Ocular movements were slightly impaired bilaterally. The initial diagnosis was myasthenia gravis (MG), based on positive single fibre electromyography (SFEMG) study. He did not improve with treatment for MG. Family history was notable for diagnosis of MG (based on SFEMG alone) in his late father, who presented at age 75, with progressive ptosis and bulbar symptoms for a few years. Genetic screening for PABPN1 gene was performed for the index patient, which showed 13 repeats.

Case 3: A 68-year-old Malay lady presented with bilateral, progressive ptosis since her 50s and mild dysphagia for 10 years. Investigations are summarised in Table 1. A similar history of ptosis and dysphagia was reported in the patient’s mother and 4 siblings, with onset of symptoms in the sixth decade. No ptosis or dysphagia was reported in her children (aged 25-43 years). Genetic screening for OPMD was positive with 13 repeats.

Case 4: A 58-year-old Chinese gentleman presented with history of choking for 3 to 4 years. Mild facial and limb-girdle weakness (Medical Council Research grade 4 to 4+) was noted on examination. Initial diagnosis included MG and facioscapulohumeral muscular dystrophy. Serum creatine kinase (CK) was mildly elevated, and mild muscle membrane irritability was noted on electromyography (EMG). A detailed review was notable for mild, symmetrical ptosis (not reported by patient), and similar complaint in

Fig. 1. Top panel: Case 1- Serial photographs over 50 years showing progressive, bilateral, and symmetric ptosis. Bottom panel: Cases 2 and 3, at index presentation.
patient’s 2 sisters and mother. Patient declined genetic testing; however, based on the clinical evidence, final diagnosis was that of OPMD.

Discussion

We have reported 4 patients of OPMD, from 4 different families in Singapore, diagnosed over a period of 4 years. Considering that each patient reported symptomatic relatives residing in Singapore, the total number of affected individuals in Singapore is significantly higher.

OPMD is caused by an abnormal GCN expansion within the *PABPN1* gene on chromosome 14 (14q11.2-q13), with the mutated gene containing 11-17 repeats. Mean age at diagnosis and severity of clinical symptoms correlates to the number of GCN repeats. No anticipation is noted, as the expansion tends to be stable. Most cases have an autosomal dominant (AD) inheritance, and cumulative penetrance is 99% at age >69 years. Autosomal recessive OPMD is rare, and tends to be later in onset (>60 years), with fewer GCN repeats (11 repeats, as compared to 12-17 repeats in AD OPMD).
Dysphagia precedes or is simultaneous with ptosis.1,6,14 Proximal limb weakness tends to occur later in the course of disease, and may correlate with the size of the mutation (number of repeats). Recently, early involvement of pelvic girdle and proximal leg muscles—specifically the hip adductors and hamstrings—has been reported in a cohort of 14 Dutch patients with OPMD.19 Extraocular muscle weakness may be noted, but complete external ophthalmoplegia is rare. Occasional atypical or monosymptomatic presentations have been reported, especially in heterozygotes.16,20 In this study, ptosis was the initial symptom in 3 of 4 patients, with dysphagia occurring 5 to more than 20 years thereafter. However, ptosis may initially go unnoticed by patients, as noted in Case 4. Thus, actual duration of ptosis may be much longer. Examination of serial facial photographs may be useful in such cases.

Serum CK may be elevated in patients with higher number of repeats, in homozygotes and patients with severe disease.6,14,16 EMG examination may be normal in the early stages and in patients with only ocular and pharyngeal symptoms. In patients with limb weakness, myopathic changes and abnormal spontaneous activity may be seen. Notably, 1 of our patients had abnormal SFEMG. Increased jitter is not specific for MG, and caution must be exercised in interpretation.21

Common clinical misdiagnoses in OPMD include MG, mitochondrial myopathy, amyotrophic lateral sclerosis, and myotonic dystrophy. In the muscle biopsy, non-specific mitochondrial abnormalities, including large mitochondria, abnormal cristae, paracrystalline mitochondrial inclusions, on electron microscopy, are noted. Detection of filamentous intranuclear inclusions in skeletal muscle fibres (mutated \textit{PABPN1}) by electron microscopy or immunostaining is helpful in confirming the diagnosis on biopsy.22 Molecular genetic testing of \textit{PABPN1} is confirmatory.

There is currently no cure for OPMD. The disease does not appear to affect life span; however, it significantly affects quality of life. Symptomatic management may include surgical procedures on the eyelids and pharyngeal muscles. Genetic counselling is a core part of management, and carrier testing may be offered to asymptomatic at-risk young adults, especially for purpose of family planning.

This study aimed to highlight that OPMD is not rare in Southeast Asia, though we acknowledge a possible tertiary centre bias. OPMD should be considered in any patient who presents with late onset, progressive ptosis, with or without dysphagia, as well as in patients who do not respond to MG treatment (Case 2); a detailed family history for similar symptoms is a useful pointer. Molecular genetic testing of \textit{PABPN1} is recommended for suspected cases of OPMD. As shown in this study, some OPMD patients can have positive SFEMG or mitochondrial abnormalities on muscle biopsy, thus leading to wrong diagnoses. An increase in awareness of OPMD may help prevent unnecessary investigations, ineffective or potentially harmful treatment in affected individuals.

Acknowledgement

The authors would like to thank their patients for providing and permitting them to publish their personal details. They are also grateful to Dr Goh Liuh Ling (PhD), for her assistance in performing genetic testing. Approval for this study was obtained from the local institutional review board (CIRB Ref 2017/2065). Informed consent was obtained from patients for publication of photographs.

REFERENCES

Monica Saini, MD, Nigel CK. Tan, MBBS, FAMS (Neurology), FRCP*; Josiah Chai, MBBS, FAMS (Neurology), FRCP

*Department of Medicine, Neurology, Changi General Hospital, Singapore

Department of Neurology, National Neuroscience Institute, Singapore

Address for Correspondence: Dr Monica Saini, Department of Medicine, Neurology, Changi General Hospital, 2 Simei Street 3, Singapore 529889.

Email: monica_saini@cgh.com.sg