Validity of a Revised Short Form-12 Health Survey Version 2 in Different Ethnic Populations

Maudrene LS Tan, MD, Hwee Lin Wee,* MSc, Agus Salim, PhD, Jeannette Lee, PhD, Stefan Ma, PhD, Derrick Heng, PhD, E-Shyong Tai, PhD, Julian Thumboo,* FAMS (Rheumatology)

1Saw Swee Hock School of Public Health, National University of Singapore, Singapore
2Department of Pharmacy, National University of Singapore, Singapore
3Department of Rheumatology & Immunology, Singapore General Hospital, Singapore
4Department of Mathematics and Statistics, La Trobe University, Australia
5Epidemiology and Disease Control Division, Ministry of Health, Singapore
6Department of Medicine, National University Health System, Singapore

Address for Correspondence: Prof Julian Thumboo, Department of Rheumatology and Immunology, Singapore General Hospital, Outram Road, Singapore 169608.
Email: julian.thumboo@sgh.com.sg

Abstract

Introduction: The Short Form-12 version 2 (SF-12v2) is a shorter version of the Short Form-36 version 2 (SF-36v2) for assessing health-related quality of life. As the SF-12v2 could not be resolved into the physical- and mental-component summary score (PCS and MCS, respectively) in the general population of Singapore, this study aims to determine and validate the Singapore SF-12 version 2 (SG-12v2). Materials and Methods: The SG-12v2 was generated using the same methodology as the SF-12v2. Bootstrap analysis was used to determine if the SG-12v2 were significantly different from the SF-12v2. Content validity was assessed using percentage of variance (R^2) of the Singapore version of SF-36v2 PCS and MCS explained by the SG-12v2 items. Agreement between the SF-36v2 and the SG-12v2 was assessed using Bland-Altman diagrams. Criterion validity was demonstrated if effect size differences between SF-36v2 and SG-12v2 were small (Cohen’s criteria). Known-group validity of SG-12v2 was reported for participants with and without chronic diseases. Results: Five items differed between the SG-12v2 and SF-12v2. Bootstrap analysis confirmed that SG-12v2 and SF-12v2 were significantly different. The SG12v2 explained 94% and 79% of the R^2 of the SF-36v2 PCS and MCS, respectively. Agreement was good and effect size differences were small (<0.3). Participants with chronic diseases reported lower SG-12v2 scores compared to participants without chronic diseases. Conclusion: The SG-12v2 offers advantage over the SF-12v2 for use in the general population of Singapore. The SG-12v2 is a valid measure and will be particularly useful for large population health surveys in Singapore.

Ann Acad Med Singapore 2016;45:228-36

Key words: Health-related quality of life, Singapore, Bland-Altman, Bootstrap