Dear Editor,

A 63-year-old woman with a family history of colon cancer presented with early satiety and loss of appetite. Physical examination was unremarkable apart from fullness in the epigastrium and a possible mass. In view of this, a computed tomography (CT) scan was performed. No upper abdominal pathology other than uncomplicated cholelithiasis was demonstrated. However, a 3-cm soft tissue mass was found to be present along the wall of the rectosigmoid colon (Fig. 1A).

Fibreoptic colonoscopy of the lesion revealed a broad-based rectosigmoid polyp with normal appearance of the overlying mucosa. Polypectomy was unsuccessful; biopsies were sent for histopathological analysis, with findings of hyperplastic mucosa. No malignant cells were found. As colonoscopy was incomplete due to redundancy of the colon, a barium enema was performed to evaluate the rest of the colon. In keeping with colonoscopy findings, the rectosigmoid mass showed a smooth overlying mucosa (Fig. 1B). The rest of the colon was unremarkable.

In order to aid surgical planning, high resolution magnetic resonance imaging (MRI) of the rectum was performed. This confirmed the presence of the submucosal mass (Fig. 1C). Restricted diffusion was present in the primary lesion and the surrounding nodes (Fig. 1D). These findings, together with a potentially false negative biopsy result, prevented satisfactory exclusion of malignancy. As such, a decision to perform anterior resection, rather than local excision of the tumour, was made.

At laparotomy, the submucosal mass was firm, with spherical shape and measured 3 cm in diameter (Fig. 2A).

Fig. 1A. Axial CT image with per rectal contrast shows a homogeneous, round, soft tissue mass along the left wall of the rectosigmoid colon, with a smooth margin (arrow). Subtle stranding of the perirectal fat is present (arrowhead), usually deemed a feature of extraserosal infiltration; it can also be seen in the setting of tumor induced inflammation. However, distinction between the two is beyond the limits of current imaging modalities.

Fig. 1B. Spot image from barium enema showing a broad-based, smooth filling defect consistent with a submucosal mass, at the rectosigmoid junction (arrow).

Fig. 1C. Coronal oblique T2-weighted MR image shows the mass to be mildly hyperintense and slightly heterogeneous (arrow). Note well-circumscribed margins of the lesion that alludes to its submucosal location and benign etiology.
Histopathological examination showed features compatible with schwannoma (Figs. 2B and 2C). The patient had an uneventful postoperative course without recurrence.

Gastrointestinal tract (GIT) schwannomas are benign lesions found mostly in the stomach; rectal origin is rare. Our case showed several features suggesting a benign tumour: absence of mucosal involvement on colonoscopy and barium enema, and a smooth, well circumscribed margin at CT and MRI. Typically, GIT schwannomas are homogeneous before and after intravenous contrast enhancement on CT and MRI. This helps to distinguish them from gastrointestinal stromal tumours (GISTs), which are usually heterogeneous due to haemorrhage, necrosis or cystic change. A literature search for MRI features found 2 cases of colorectal benign schwannomas, both of which were T1-weighted hypointense and T2-weighted hyperintense relative to muscle. Diffusion weighted imaging features of rectal schwannoma has not be previously described. Restricted diffusion in our case of rectal schwannoma reflects its high cellularity, supporting the observation that restricted diffusion can be seen in both malignant and benign lesions.

However, there were also features of the lesion that did not allow satisfactory distinction from malignancy. Specifically, CT and MRI findings of enlarged lymph nodes and stranding of the perirectal fat were suggestive of extraserosal spread. Distal colonic schwannoma with reactive lymphadenopathy has been reported in a single case previously, however, based on an earlier series of GIT schwannomas, lymphadenopathy is not a common feature. Furthermore, restricted diffusion within the lymph nodes...
was present and a false positive sign of malignancy. This is in line with the study by Roy et al., which showed that diffusion weighted imaging may not reliably differentiate between benign and malignant small pelvic lymph nodes in patients with underlying malignancy. On retrospect, these were probably related to focal inflammation at the site of the lesion.

In summary, our case illustrates some typical imaging appearances of this rare condition, while highlighting the potential for rectal schwannomas to present with subtle aggressive features on MR imaging that have not previously been described.

REFERENCES


1Department of Diagnostic Radiology, Khoo Teck Puat Hospital, Singapore
2Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore
3Department of Pathology, Tan Tock Seng Hospital, Singapore
4Department of Colorectal Surgery, Singapore General Hospital, Singapore

Address for Correspondence: Dr Tan Cher Heng, Department of Diagnostic Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433. Email: tchers1977@gmail.com