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Introduction
Thalassaemia is a genetic haemoglobinopathy in which the 

production of normal haemoglobin is partly or completely 
suppressed because of a defective synthesis of 1 or more 
of its component globin chains. In haemoglobin (Hb) E 
beta-thalassaemia, an individual inherits 1 gene for Hb E 
from 1 parent and 1 beta-thalassaemia gene from the other 
parent. These 2 genes together lead to a double heterozygous 
Hb E beta-thalassaemia which causes a moderately severe 
anaemia similar to beta-thalassaemia major.1

Hb E beta-thalassaemia is a common haemolytic anaemia 
in Southeast Asia. It is also most common in the eastern 
and north-eastern parts of India.2 To our knowledge, there 
have been very few studies relating to the causes of rapid 
erythrocyte breakdown in Hb E beta-thalassaemia.

Iron overload is the consequence of rapid erythrocyte 

breakdown in the beta and Hb E beta-thalassaemia.3 Non-
haem ferrous iron is a strong pro-oxidant and is responsible 
for the production of  damaging hydroxyl (•OH) radical 
by Fenton reaction.4 In our study, we investigate the 
level of ferrozine detected erythrocytic non-haem iron, 
important cellular redox marker reduced glutathione 
(GSH), glutathione reductase enzyme within erythrocyte 
and cellular damage marker thiobarbituric acid reacting 
substances (TBARS), ferritin level in serum of Hb E beta-
thalassaemia and comparing these to the normal controls to 
understand the mechanism of rapid erythrocyte destruction 
in Hb E beta-thalassaemia.

Materials and Methods 
Sample Collection

The current study included Hb E beta thalassaemic 
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patients (n = 30; age range of 3 to 15 years, with mean age 
of 7.88 ± 3.02 years) determined by the clinical picture 
and laboratory investigation including high performance 
liquid chromatography (HPLC) (Biorad) by the Department 
of Haematology of NRS Medical College and Hospital, 
Kolkata, India. Blood samples were collected from the 
patients who have received blood transfusion at least 1 
month prior to sampling. Normal control samples (n = 32; 
age range of 18 to 30 years, with mean age of 23.52 ± 3.56 
years) who had no history of haematological abnormality 
and lever disease were selected. Blood was collected from 
patients and from healthy normal individuals after getting 
their prior consent. The study protocol was approved by the 
ethical committee of NRS Medical College and Hospital 
(Government of West Bengal), Kolkata, India.

Characteristics of Patients
The clinical features of the patients showed pallor and 

jaundice (variable); most had hepatosplenomegaly, bony 
deformities-fragile and frontal bossing. Haematological 
fi ndings showed microcytic hypochromic red cells with 
Hb <7 g/dL, low haematocrit (HCT), mean corpuscular 
volume (MCV) <70 femtolitre (fl ), mean corpuscular 
haemoglobin (MCH) <18 picogram (pg), low mean 
corpuscular haemoglobin concentration (MCHC) and 
high red cell distribution width (RDW). Hb analysis with 
HPLC showed HbA2 30% to 65%, HbF 21% to 30% and 
HbA 4.5% to 11%.

Blood samples (3 mL/subject) from thalassaemic and 
control subjects were collected aseptically in heparinised 
condition. Serum samples were obtained by centrifuging 
the clotted blood samples at 5000 rpm for 5 minutes and 
processed for estimation. Stroma-free haemolysate was 
prepared from heparinated blood by removing serum and 
buffy coat, washing thrice by 0.15 mol/L sodium chloride 
(NaCl) solution and treating with hypotonic phosphate 
buffer followed by centrifugation at 10,000 rpm for 30 
minutes. 

Estimation of Biochemical Parameters
Erythrocytic ferrozine detected free reactive iron was 

measured using Panter’s method.5 Intracellular erythrocytic 
GSH concentration was estimated using 2,2-dithio-
bisnitrobenzoic acid (DTNB) method spectophotometrically 
at the wave length of 412 nm and expressed against per 
gram of Hb with slight modifi cations according to Hu’s 
method.6 The enzyme glutathione reductase catalysed 
reduction of oxidised glutathione to reduce GSH. The red 
blood cell glutathione reductase was reduced nicotinamide 
adenine dinucleotide phosphate (NADPH) dependent and 
has fl avin adenine dinucleotide (FAD) as co-factor. The 
enzyme activity was assayed spectophotometrically by 
measuring NADP formed following the method suggested 

by Tillotson et al and Bayoumi et al.7,8 It has been proposed 
that the percentage of stimulation of the NADPH dependent 
erythrocyte glutathione reductase (EGR) in the presence 
of added FAD be used as a measurement of the status of 
ribofl avin in man. This stimulatory effect is referred to as 
activity co-effi cient (AC). The AC is defi ned as the reduction 
of absorbance (oxidation) of NADPH in the presence of 
FAD divided by the reduction of absorbance of NADPH 
without FAD over a given period of time, as shown in the 
equation.9

Serum ferritin was estimated by the enzyme-linked 
immunosorbent assay (ELISA) technique supplied by the 
kit from Omega Diagnostic Limited, Scotland, UK. The 
cellular damage was measured by estimating TBARS. This 
is a spectophotometric assay based on thiobarbituric acid 
(TBA) reaction, read at a wavelength of 532 nm following 
Ohkawa et al’s method.10

Statistical Analysis
All parameters were expressed as mean ± standard error 

(SE). The statistically signifi cant differences between values 
were obtained using the 2-tailed Student’s unpaired t-test. 
Signifi cance level was considered up to P value less than 
0.05.

Results
Table 1 shows that the erythrocytic free reactive iron was 

signifi cantly higher in Hb E beta-thalassaemic patients (P 
<0.001) than in controls. It was about 30% more in patients 
and an elevation was associated with a high level of serum 
TBARS, which was about 86% more in patients than in 
controls. Again, we tried to correlate the erythrocytic free 
reactive iron level and serum TBARS level of Hb E beta 
patients and found that the correlation co-effi cient (r) 
between them was 0.895 (P <0.001) (Fig. 1). We observed 
that the serum ferritin level was also signifi cantly higher in 
Hb E beta-thalassaemia patients (P <0.001) compared to 
controls. A correlation co-effi cient between serum ferritin 
and serum TBARS of patients was found to be highly 
signifi cant (r = 0.81) (P <0.001). Intracellular GSH, an 
important antioxidant marker, was found to be depleted 
by >3 times (approx) in thalassaemic patients compared 
to controls. Strikingly, erythrocytic glutathione reductase 
(both basal and stimulated) was low in Hb E beta patients. 
Glutathione reductase (basal) was about 35% less in Hb 
E beta and glutathione reductase (stimulated) was about 
10% less in patients compared to controls. We analysed 

  =  AC

Reduction of absorbance 
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the activity co-effi cient by calculating the ratio of the 
stimulated and the basal erythrocytic glutathione reductase 
enzyme level. We found that the ratio was high, at 1.65, 
in thalassaemic patients whereas it was within range in 
normal individuals.

Discussion
From our fi ndings, it is evident that the level of non-haem 

iron detected by ferrozine reaction is signifi cantly increased 
within erythrocytes of Hb E beta-thalassaemia. Iron in its 
6th coordination state is tamed within the protoporphyrin 
cage of haem pocket of haemoglobin.  However in Hb E 
beta-thalassaemia where there is a structural anomaly in the 
globin chain, iron may be liberated from haem and ligated to 
other parts of globin moiety possibly with distal histidine. It 
has been reported that H2O2 and super oxides are generated 
due to the auto oxidation of unstable haemoglobin chain.11

Thus, this free non-haem iron might catalyse Haber Weiss 
reaction in the presence of H2O2 producing ferryl moiety 
and hydroxyl radical.12,13 These further damage erythrocyte 
membrane lipids and proteins.14,15 Elevation of non-haem 

iron is further refl ected by an increased level of serum ferritin 
and the cellular damage is indicated by a high level of lipid 
peroxidation end product TBARS in Hb E beta-thalassaemic 
patients. Iron loading is a constant feature in transfusion 
dependent homozygous E beta-thalassaemia which 
potentiate the increased level of ferritin.16 We also found a 
strong correlation between serum TBARS and erythrocytic 
free reactive iron (r = 0.895) of patients and also between 
serum TBARS and serum ferritin (r = 0.81) of patients as 
shown in Figures 1 and 2. These results indicate that both 
erythrocytic free reactive iron and serum ferritin levels are 
important parameters to estimate the cellular damage. The 
reduced glutathione is an important redox marker of the 
cell.17 GSH functions in diverse ways such as regulating 
antioxidant defence, xenobiotics, cellular communication 
and redox regulation of signal transduction.18 The redox 
imbalance in Hb E beta-thalassaemia is refl ected by 
the lowering level of erythrocytic GSH which is very 
signifi cantly reduced compared to the normal controls. This 
clearly depicts that the erythrocyte environment of the Hb 
E beta-thalassaemia is in oxidative stress and vulnerable 

Table 1.  Comparative Study of Mean Concentration (±SE) of Biochemical Parameters (intracellular level and serum) and their 
 Signifi cant Levels of Normal Control and Thalassaemic Patients

Parameters  Control (n = 32)  Hb E (n = 30)  Signifi cance 

Erythrocytic free reactive iron (μg/g of Hb)  109.72 ± 4.83   142.97 ± 7.34   P <0.001 

Serum ferritin (ng/mL)  50.09 ± 2.65  1022 ± 47.03  P <0.001 

Serum TBARS (n mole/mL)   1.96 ± 0.17  3.65 ± 0.43  P <0.001 

Erythrocytic reduced glutathione (μM/g of Hb)  72.92 ± 2.55   25.79 ± 1.35   P <0.001 

Erythrocytic glutathione reductase (Basal) (U/mL)  437.56 ± 6.13  284.89 ± 6.62  P <0.001 

Erythrocytic glutathione reductase (Stimulated) (U/mL)  521.78 ± 9.43  470.51 ± 4.79  P <0.001 

Erythrocytic glutathione reductase (Activity co-effi cient)  1.19  1.65   

Fig. 2. Correlation between serum TBARS and serum ferritin in Hb E beta 
thalassaemic patients (n = 30, r = 0.81, y = 0.0075 x -4.02).

Fig. 1. Correlation between serum TBARS and erythrocytic free reactive 
iron in Hb E beta thalassaemic patients (n = 30, r = 0.895, y = 0.053 x -3.93).
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to a free radical attack which is also supported by others.19 
Moreover, glutathione reductase enzyme which converts 
oxidised glutathione (GSSG) to reduced GSH is also found 
to be signifi cantly reduced in Hb E beta-thalassaemia. Thus, 
the regeneration of reduced GSH in non-nucleated mature 
erythrocyte is not possible. Thus, an oxidised environment 
of erythrocytes is predominant which also destabilises the 
lifespan of erythrocytes.

Erythrocyte glutathione reductase has been proposed as 
an enzymatic index to the ribofl avin status in humans.20-23 
EGR activity is altered in vivo by ribofl avin in diet and in 
vitro by FAD.24-26 The degree of stimulation of the EGR 
in vitro is dependent on the FAD saturation of the protein 
which in turn is dependent on the availability of ribofl avin. 
It has been proposed that an AC >1.2 would be suggestive 
of possible ribofl avin defi ciency.9 In our study, the ratio of 
stimulated and basal glutathione reductase enzyme level, 
that is AC, was found to be 1.65 for Hb E beta-thalassaemia 
whereas the normal range reported by Glatzle et al9 was 
0.90 to 1.2. This indicates a signifi cant ribofl avin defi ciency 
in Hb E beta-thalassaemia.

Serum TBARS is also found to be signifi cantly elevated 
in Hb E beta-thalassaemia which refl ects a massive cellular 
damage in the said disorder.

The above observations may help us to conclude that 
catalytic non-haem iron and low GSH level stimulate the 
early destruction of erythrocytes. The therapeutic use of GSH 
precursor such as n-acetyl cystine and ribofl avin associated 
with iron chelator may be taken under consideration for 
delayed erythrocyte breakdown in Hb E beta-thalassaemia. 
However, further studies can be undertaken to understand 
the possible corners of redox imbalance in Hb E beta-
thalassaemia.

Acknowledgements
We are thankful to Prof Moloy Ghosh, Dr Sanjay Misra and Mr Swarnava 

Roy, of the Department of Haematology, NRS Medical College and Hospital, 
Kolkata, for their co-operation in the present study.

REFERENCES
 1. Weatherall DJ. Haemoglobin E beta-thalassaemia: an increasingly 

common disease with some diagonostic pit falls. J Pediatr 1998;132:765-7.
 2. Weatherall DJ, Clegg JB. Thalassaemia – a global public health problem. 

Nature 1996;2:847.
 3. Inacu TC. Ultrastructural pathology of iron overload. Clin Haematol 

1989;2:475.
 4. Gutteridge JMC. Iron promoters of the fenton reaction and lipid 


