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Introduction
A dichotomous (2-category) outcome variable is indeed 

ubiquitous in biomedical research enquiries. Here are some 
examples: 
(a) a cross-sectional study to compare the prevalence 

(proportion) of obesity among the adult males and 
females in Singapore.

(b) a clinical trial to compare ethnic differences in the 1-year 
survival among patients with metastatic non-small cell 
lung cancer treated with Gefi tinib (Iressa).

(c) an epidemiologic study to compare the 2-year mortality 
rate of lung cancer between those who continue to smoke 
and those who quit after diagnosis.

The outcome variable (henceforth denoted by Y) in all 
these examples is dichotomous or binomial: obese or non-
obese, surviving or not surviving by the end of 1 year, died 
or surviving by the end of 2 years. Note that examples (b) 
and (c) are generally referred to as “time-to-event data 
with a constant risk period” (1 year, 2 years) or ‘closed 
cohort studies’.

The usual chi-square test is generally deployed to 
compare the prevalence proportion (example a) or 
cumulative incidence rate (examples b and c) among 2 or 

more groups. However, this practice can produce highly 
misleading results because virtually all biological outcomes 
are multifactorial (affected by many factors, not just the 
one being investigated). Hence, the apparent difference 
in the proportion is likely to be confounded by numerous 
factors, such as gender, age and stage of cancer at time 
of diagnosis. Indeed, confounding is a virtual guarantee 
in any non-randomised comparison study, and virtually 
all aetiologic studies of adverse effects involving human 
subjects are, and must be, non-randomised.1,2 It must be 
noted that confounding can still occur in a randomised 
comparison study, because random allocation only tends 
to minimise confounding as the study size increases. For 
example, if we were to randomly allocate 100 subjects to 2 
groups, sex and age will unlikely be totally balanced in the 2 
compared groups. However, if we were to randomly allocate 
10,000 subjects to 2 groups, sex, age and other potential 
confounders will be very balanced, and confounding will 
be negligible. 

Clearly, a useful statistical method for comparison 
studies must have the capability for the adjustment of 
confounding. For a long time, the so-called stratifi cation 
and standardisation methods have been widely deployed.1,2 

Because these methods use cross-tabulation, they are 
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Abstract
A dichotomous (2-category) outcome variable is often encountered in biomedical research, and 

Multiple Logistic Regression is often deployed for the analysis of such data. As Logistic Regression 
estimates the Odds Ratio (OR) as an effect measure, it is only suitable for case-control studies. 
For cross-sectional and time-to-event studies, the Prevalence Ratio and Cumulative Incidence 
Ratio can be estimated and easily interpreted. The logistic regression will produce the OR which 
is diffi cult to interpret in these studies. In this report, we reviewed 3 alternative multivariate 
statistical models to replace Logistic Regression for the analysis of data from cross-sectional and 
time-to-event studies, viz, Modifi ed Cox Proportional Hazard Regression Model, Log-Binomial 
Regression Model and Poisson Regression Model incorporating the Robust Sandwich Variance. 
Although none of the models is without fl aws, we conclude the last model is the most viable. A 
numeric example is given to compare the statistical results obtained from all 4 models.
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suitable for adjusting for 1 or at most 2 confounding 
covariates based on a typical study size. Moreover, a 
continuous covariate (age, blood pressure) must be grouped 
into a few classes, thereby incurring residual confounding. 
Consequently, considerable efforts have been devoted to 
developing statistical models for the analysis of data from 
comparative studies. These model-based multivariate 
statistical methods are capable not only for the adjustment 
of several confounding covariates, but also the assessment 
of interaction (effect modifi cation) between factors, based 
on modest study size.2,3 Not surprisingly, a cursory look 
at the journals will attest that model-based multivariate 
methods are routinely deployed for the analysis of research 
data. However, not all models are the same, and the wrong 
choice of model can produce misleading statistical results. 

The choice of the model depends on the study design 
and ‘effect measures’. For the remainder of this paper, we 
will briefl y highlight 3 common ‘effect measures’ (there 
are others) in medical and epidemiological research and 
review the various statistical models used to estimate them. 
The pitfalls and merits of these models will be highlighted 
and specifi cally, the limitations of Logistic Regression for 
the analysis of dichotomous outcomes will be emphasised. 

Effect Measures
In aetiologic research, an ‘effect measure’ quantifi es the 

effect of an exposure or factor X (e.g. gender, active therapy, 
smoking cessation) on an outcome event Y (obesity, 1-year 
survival, 2-year mortality). An effect measure can either 
be a ratio (percent of obesity in males divided by that 
in females), or a difference, RD (mortality rate in those 
who quit minus those who continued smoking). Although 
in this paper, we will only discuss ratio effect measures, 
difference effect measures are of particular importance in 
clinical trials and public health settings where the aim is 
to evaluate the absolute magnitude of benefi t when a new 
therapy is introduced or when a risk factor is removed.

In many publications, all effect measures are loosely 
referred to as Relative Risk (RR). Some would restrict the 
use of RR for cohort studies and the Odds Ratio (OR) for 
case-control studies. It is important to use the appropriate 
effect measure based on the study design. In a cross-sectional 
study, the Prevalence Ratio (PR) is used. In a closed cohort 
study with time-to-event data with constant risk period (most 
clinical trials), the Cumulative Incidence Ratio (CIR) is the 
appropriate effect measure. In an open cohort study, the 
Incidence Density Ratio (IDR) is used. Odds Ratio (OR) 
is to be used only for case-control studies.

Misuses of OR 
As many investigators erroneously misinterpret OR as 

though it were the RR (IDR, CIR or PR), leading to incorrect 

conclusions, it is crucial to highlight the differences between 
these 2 effect measures. We consider some hypothetical 
data displayed in Table 1. Let P+ denote the proportion 
of positive-Y (death within 2 years) in positive-X (those 
who continued smoking), and P- denote the proportion of 
positive-Y in negative-X (those who quit smoking). Then

RR = P+ / P- = 0.6 / 0.2 = 3
OR = [P+ / (1 - P+)] / [P- / (1 - P-)] = (0.6 / 0.4) / (0.2 / 0.8) = 6
We note that whereas RR has a transparent meaning 

(the risk of dying within 2 years is, on average, 3 times 
greater in those who continued smoking than those who 
stopped), OR, being a ratio of 2 ratios, is completely devoid 
of intelligibility. Moreover, the numeric value of RR and 
OR can be quite discrepant. So the question is, why do we 
use OR at all as an effect measure? The answer is given 
in the next section.

Logistic Regression Model
As noted above, a dichotomous Y variable can have only 

2 values. Y is either 0 (alive beyond 2 years) or 1 (death 
within 2 years). If we denote π as the probability of Y = 
1, then Y follows the binomial distribution with π values 
bounded by 0 and 1, with a binomial variance equal to {π 
x (1-π)}.

The Logistic Regression Model was expressly developed 
as a multivariate method for binomial Y variable. The model 
estimates the correct binomial variance, and it deploys the 
logit link function to constrain the model-predicted π to 
lie between 0 and 1 (Link functions for various statistical 
models are expounded in reference 3). Hence in terms of 
mathematical properties, the Logistic Model is undisputedly 
the best model for binomial Y, and the merit of any competing 
model must be judged against the Logistic Model. If the 
Logistic Model is the best, then why develop competing 
models in the fi rst place? Because the Logistic Model 
estimates OR (not RR) as an effect measure. 

The Logistic Model was initially adapted for case-control 
studies (see citations in reference 2) because data from a 
case-control study can only determine OR.1 Also, a case-

Table 1. Hypothetical Data to Highlight the Difference Between Relative 
 Risk (RR) and Odds Ratio (OR)

            
    Exposure (X)           
Response (Y)

  +   -

+ 120 (60%)  40 (20%)

- 80 (40%)  160 (80%) 

 200   200
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control study is suitable provided the event is ‘rare’ in 
the population (say, colon cancer), in which case, OR is 
a closed approximation of RR. Using the data of Table 1 
as an example, if we change P+ from 0.6 to 0.06, and P- 
from 0.2 to 0.02, then OR = 3.13, which is very close to 
RR = 3. In fact, a case-control study is typically conducted 
for events with π much lower than 0.02 in the population, 
so OR and RR are virtually interchangeable. Thus, Logistic 
Regression is eminently useful for case-control studies 
only because the numeric value of OR mimics RR. On 
the other hand, RR can directly be determined from data 
based on cross-sectional and time-to-event (cohort) studies. 
Additionally, these studies are practical to undertake only 
for events that are relatively common. If the event was 
‘rare’, we would need to take an inordinately large cross-
sectional sample to accrue suffi cient cases, or to monitor a 
large sample of subjects over many years in a time-to-event 
study. Consequently, OR (an unintelligible effect measure) 
estimated by Logistic Regression will be numerically 
highly discrepant than RR (a meaningful effect measure). 
OR will always be greater than RR if RR is greater than 1 
(adverse effect); OR will be smaller than RR if RR is less 
than 1 (protective effect); and OR approaches RR as π in 
the population approaches 0 (rare event). 

The woeful inadequacy of Logistic Regression for cross-
sectional studies was underscored by Lee and Chia in 1993 
and 1994 to the Editors of 2 international journals,4,5 which 
stimulated considerable discussions over the years6-21 (and 
numerous others). Most of the authors agreed that PR is the 
effect measure of choice, and the few who favoured OR 
based their contention entirely on mathematical properties, 
which has doubtful relevance in a practical setting. As will 
be noted later, the main thrust of the long-standing debate 
pertains rather to statistical modelling issues, specifi cally 
to the variance of the effect measure.

Barros and Hirakata19 did an online search for cross-
sectional and time-to-event studies published in highly 
reputable international journals, and found Logistic 
Regression was used in 37 (34%) of the 110 cross-sectional 
studies, and 10 (22%) of the 45 time-to-event studies. 
Greenland22 has demonstrated persuasively that as an effect 
measure, OR is more defective for time-to-event studies 
than is generally realised. Deeks and Altman23,24 provided 
useful summaries on the pitfalls of OR. 

Perhaps the most profound example on the disastrous 
consequence of misinterpreting OR as though it were 
RR was a study to compare the percent of physicians’ 
referrals for cardiac catheterisation between Black and 
White women.25 A 7 per cent lower referral rate for Black 
women (if measured by RR) was erroneously reported as 40 
percent (misinterpreting the published OR as though it were 
RR) in the various news media, including a US television 

programme, Nightline. Subsequently, this caused a heated 
debate on racial issues. The editors of the New England 
Journal of Medicine issued an apology26 over the mistake. 
It is no exaggeration to assert that the uncritical application 
of Logistic Regression and the misinterpretation of OR 
as RR have, on balanced, incurred greater damage than 
benefi t in biomedical research in the last several decades. 

It is gratifying to know that both the New England Journal 
of Medicine and the American Journal of Epidemiology 
offi cially discourage the use of Logistic Regression (i.e., 
to report OR) for any study in which RR is ascertainable 
from the data.26,27 The recognised need to report RR instead 
of OR has prompted a publication of a simplistic formula 
for converting OR to RR,28 which was severely criticised 
by others.20,29 Unbelievably, this naive formula was actually 
deployed in 56 publications in reputable journals from the 
end of 1998 to May 2001.20 

We will now consider alternatives to Logistic Regression. 
All the models discussed below estimate RR from 
any comparative study in which this effect measure is 
ascertainable from the data, viz, cross-sectional study 
(PR), time-to-event study with constant risk period (CIR). 
Although none of the models is mathematically perfect, 
as the Logistic Model is perfect, all the models have 
undisputed advantages over the Logistic Model for reasons 
expounded above.

Modifi ed Cox’s Proportional Hazards Regression Model
Cox’s Proportional Hazards Regression Model (PH) was 

originally developed for the analysis of time-to-event data 
with varying risk periods, i.e., a dynamic or opened cohort 
study with censoring and lost-to-followup.2  The PH model 
estimates the Instantaneous Hazard Ratio (HR), which 
is IDR at the same point in time. For example, if HR of 
smoking on lung cancer is 2, we say that at any given same 
moment in time, the likelihood of the occurrence of lung 
cancer is twice as high in smokers than in non-smokers.

As events (lung cancer) clearly do not occur at the same 
moment (they occur over different times), the numeric 
value of HR will lie somewhere between OR and IDR, 
but if events do occur within the same moment, then HR 
will be equal to IDR.21 

For cross-sectional studies, we do not know when the 
events had occurred for each comparison group. However, 
we can assume that all the events had occurred within some 
constant risk period (same time interval, however long or 
short), thus reducing HR to IDR. A technical discussion of 
this point is given by Lumley and colleagues.21

This was the reason which motivated Lee and Chia4,5 
to propose a modifi ed version of the PH model for cross-
sectional studies, as a replacement for Logistic Regression. 
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They showed that by stipulating a condition of constant 
risk period in the PH model, the Hazard Ratio reduces 
to CIR for closed cohort and PR for cross-sectional data. 
The RR estimated by the Lee-Chia method is in fact the 
Cumulative Incidence Ratio, (the correct effect measure for 
time-to-event data in examples b and c), and the Prevalence 
Ratio, (the correct effect measure for cross-sectional data 
in example a).1,5,18

Thus, if CIR = 2 in example c, we say the likelihood or 
risk of dying within 2 years is twice as high for those who 
continue to smoke as compared to those who quit after 
diagnosis. If PR of men relative to women is 2 in example 
a, we would say that the likelihood of fi nding an obese 
person among men is twice that among women. 

Although the Lee-Chia method produces the correct 
(unbiased) estimate of HR, the method has one notable 
limitation in that the variance of HR tends to be infl ated, 
resulting in a wider confi dence interval than it should be. 
This is because Lee-Chia assumed Y to be Poisson with a 
log link function, when in fact it is Binomial with a logit 
link function (i.e., Logistic Model). As the Poisson variance 
is unbounded (variance increases with mean), it is generally 
greater than the Binomial variance, which is bounded 
(0 when π = 0, maximum of 0.25 when π = 0.5), thus 
resulting in an infl ated variance for HR. It should be noted 
that the Poisson variance approaches the Binomial variance 
as π approaches 0, so for events of fairly low incidence or 
prevalence in the population, say π = 0.2 or lower, the Lee-
Chia estimated variance of HR should be quite acceptable. 
Nonetheless, this limitation has prompted the genesis of a 
long-standing debate,6-21 which we will encapsulate in the 
following sections.

Log-Binomial Regression Model 
In view of the variance-infl ation problem with the Lee-

Chia method,4,5 the Log-Binomial Regression Model6,7, 9, 

19,20 was suggested as a possible alternative. The model 
assumed Y to be Binomial (correct) with a log link function 
(incorrect). Although this model alleviated the variance-
infl ation problem, the log link function incurs other setbacks 
that are more damaging. Unlike the logit link function, 
which constrains the model-predicted π to fall between 0 
and 1, the log link function only constrains π to be >=0, 
but not <=1. Subjects whose model-predicted π is >1 will 
be excluded, and consequently, the mean model-predicted 
probabilities and HR will not be maximum likelihood 
estimates, i.e., they are biased. This problem is accentuated 
if π in the population is high, say >0.8, and if there are 1 
or more continuous covariates (e.g., age, blood pressure) 
included in the model. The side effect of this problem is 
non-convergence in parameter estimations, that is, HR 
cannot even be estimated by the statistical programme. 
These issues are well-recognised.8,10,16,17

There have been suggestions on how to lessen the non-
convergence problem,16,30 but others have countered that 
even if the parameter estimations do converge, there is 
no guarantee that the HRs are even close to maximum 
likelihood estimates.21 Those who defend the use of the Log-
Binomial Model claim, without proof, that these problems 
are negligible if π in the population is not close to 1. They 
have made no mention about the inclusion of continuous 
covariates in the model.

It must be noted that the Lee-Chia method4,5 is not beset 
by these 2 problems, because the outcome variable in the 
Cox PH Model is the “instantaneous hazard”, which is not 
a probability bounded by 0 and 1. Although neither the 
Lee-Chia method nor the Log-Binomial Model is without 
fl aw, we think the former (yielding an unbiased estimate of 
RR, but with an infl ated variance) is more viable than the 
latter (yielding a biased estimate of RR, plus the problem 
of non-convergence) in a practical setting. 

Modifi ed Poisson Regression Model Incorporating the 
Robust Sandwich Variance

More recently, Zou31 proposed the modifi ed Poisson 
Regression Model incorporating the Robust Sandwich 
Variance (RSV) to statistically compensate for the Poisson 
variance-infl ation problem. Like the PH Model of Lee and 
Chia,4,5 Zou also assumed Y to be Poisson (incorrect) with 
a log link function. In other words, Lee-Chia4,5 and Zou31 
both employed an identical model (Poisson) with identical 
transformation (log link function). In fact, it can be shown 
that under the condition of constant risk period, the Lee-Chia 
modifi ed PH model is identical to Zou’s modifi ed Poisson 
model without RSV, so both models will produce identical 
HRs and their variances.

Zou’s contribution is his incorporation of RSV32,33 to the 
Poisson Model to compensate for the infl ated variance of 
HR that is inherent in the Lee-Chia method, and therein lies 
the improvement over the Lee-Chia method. Nonetheless, 
Zou’s method is not mathematically perfect, like the Logistic 
Model is perfect. Both Lee-Chia and Zou mis-specifi ed the 
true model, viz, Poisson instead of Binomial, log instead 
of logit link function.

Note also that RSV is heretofore used in conjunction 
with Generalised Estimating Equations for the analysis 
of correlated Y data based on clustered or repeated-
measurement samples, where RSV is estimated as some 
mathematically complex function of the within-cluster and 
between-cluster variances.32-34

Although Zou incorporated the RSV in the Poisson 
Model using independent Y data, he did not elaborate 
how RSV is estimated from a non-cluster sample. Also, 
using RSV only statistically compensates for the infl ated 
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Poisson variance. Because RSV is itself estimated based 
on strong assumptions, there is no certainty that the “RSV 
compensated variance” of a Poisson variate is equal to 
the true Binomial variance. The author himself stated that 
research on this topic is in progress.

In summary, none of the post-Logistic Models discussed 
here possesses perfect mathematical properties for 
estimating HR based on dichotomous Y data. However, on 
balance, Zou’s method is clearly the most viable, and an 
online search has revealed that the method has indeed been 
gaining wide acceptance. We too endorse its use.

A Numeric Example
We now present a numeric example to compare the 

statistical results obtained from all 4 multivariate models. 
The data (collected by KSC) came from a cross-sectional 
study of 124 workers occupationally exposed to cadmium. 
The data analytic goal is to estimate the crude (unadjusted) 
and covariates-adjusted effect measure of the duration of 
exposure to cadmium (X) on blood cadmium level (Y). 
Duration of exposure is grouped into 3 categories: <= 1 
year, 1 to <= 8 years, >8 years. Blood cadmium level is 
dichotomised into 2 categories: > 5 μg/L (elevated) and 
<= 5 μg/L (normal).

We note from Table 2 that the Prevalence Ratio (PR) 
for (1 to <= 8 years relative to <= 1 year) is 56/19 = 2.9, 
and PR for (>8 years relative to <= 1 year) is 85/19 = 4.5. 
The model-predicted effect measures are shown on Table 
3. First, we note that both the crude and adjusted ORs 
estimated by the Logistic Model is grossly discrepant from 
the corresponding PRs estimated by the other 3 models. 
If we were to misinterpret OR as PR, as is often done,25,26 
our conclusion would be grossly misleading. 

Second, we note that the PRs (crude and adjusted) and 

their variances (confi dence intervals) as estimated by the 
Log-Binomial Model is somewhat discrepant from those 
estimated by the Modifi ed Cox and Poisson with RSV 
Models. More importantly, the Log-Binomial Model 
incurred a problem of non-convergence, which prompted 
the statistical programme to issue a warning that the results 
may not be trustworthy, thus re-iterating our view that the 
Log-Binomial Model is not viable.

Third, we note that the crude and adjusted PRs estimated by 
the Poisson Model with RSV are identical to those estimated 
by the Modifi ed Cox Model, confi rming the fact that both 
models are identical in estimating the effect measures.

Fourth, we note that the variances are smaller (confi dence 
intervals are narrower) as estimated by the Poisson Model 
with RSV than those by the Modifi ed Cox Model. This is of 
course expected, as RSV compensates the infl ated Poisson 
variance in the Modifi ed Cox Model.

All the statistical analyses were carried out by SAS.35 
The SAS program for Zou’s Modifi ed Poisson Regression 
Model with Robust Sandwich Variance,31 including a sample 
dataset and related information documenting the analytical 
process, can be downloaded from this website: http://www.
med.nus.edu.sg/cof/cme.html

Table 2. Years of Exposure (risk factor) and Blood Cadmium Level (response) 
in a Cross-sectional Study of 124 Workers Occupationally Exposed 
to Cadmium

              Years exposured          

Blood cadmium level (μg/L)

 <=1 1 to <=8 >8

“Elevated” (>5) 8 (19%) 35 (56%) 17 (85%)

“Normal” (<=5) 34 27 3  

Total 42 62 20

Table 3. Crude and Adjusted1 Effect Measures as Estimated by the Various Multivariate Models

Duration of exposure Logistic Log-Binomial Modifi ed Cox Poisson with RSV 
in years (OR) (PR)2 (PR) (PR)

Unadjusted effect measures      
<= 1 - - - - 

1 to <= 8 5.5 (2.2-13.8) 2.9 (1.5-5.7) 2.9 (1.4-6.4) 2.9 (1.5-5.7)

> 8 24.1 (5.6-102.5) 4.5 (2.3-8.5) 4.5 (1.9-10.3) 4.5 (2.3-8.5)

Adjusted effect measures      
<= 1 - - - - 

1 to <= 8 6.5 (2.3-18.6) 2.6 (1.4-4.9) 3.2 (1.4-7.1) 3.2 (1.6-6.2)

> 8 25.8 (5.5-121.5) 3.8 (2.1-6.7) 4.5 (1.9-11.0) 4.5 (2.3-8.9)

( ) 95% confi dence intervals
1  Adjusted for age and gender
2 Statistical programme issued a warning: “Convergence was questionable”. Therefore these results may not be reliable.
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Conclusion
Although in cross-sectional studies the OR can be 

computed, it cannot be interpreted as a RR. The most 
appropriate effect measure for a cross-sectional study is 
the PR. In biomedical research, the interpretability of an 
effect measure is far more important than whether it could 
be computed. The logistic regression was originally adapted 
for case-control studies as it estimates the OR and should 
not be used for cross-sectional study design. However, there 
are statistical challenges in computing the PR and no ideal 
model exist. The Poisson Regression Model incorporating 
the Robust Sandwich Variance should be used in cross-
sectional studies for estimating the PR.
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