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Abstract
Schizophrenia is a brain disease with differing symptomatic presentations, outcomes, and

complex genetic mechanisms. A selection of recent work integrating clinical observations, human
brain imaging and genetics will be reviewed. While the mechanics of brain dysfunction in
schizophrenia remains to be well understood, the emerging evidence suggests that a number of
interacting genetic mechanisms in dopaminergic and glutamatergic systems affect fundamental
disease-related cognitive brain processes and may do so early in disease neurodevelopment. The
availability of new imaging and genetic technologies, and institutional support for research in the
translational neurosciences, extends the hope that increased understanding of these brain
processes could yield meaningful clinical applications.
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Introduction
In Singapore, the prevalence of mental health problems

is suggested to be about 16.6%.1 Schizophrenia, the focus
in this review, affects about 1% of the population worldwide.
However, it appears that only some 10% of those with
mental health problems here seek professional help.2

Cultural attitudes and stigma remain as barriers to care,
often delaying treatment.3 Thus, outcomes may be improved,
at least in the short term, with earlier treatment of diagnosable
mental disorders. However, in addition to these major
challenges, there are real biological limitations to treatment
efficacies in terms of psychotic symptom management and
patient acceptability in the long term, a clear message out
of the recent large real-world clinical antipsychotic trials in
schizophrenia.4,5

Unfortunately, even less is known about treatments that
can improve the cognitive deficits associated with
schizophrenia. Arguably, cognitive deficits accounts for
the lion’s share of the morbidity and cost of schizophrenia.6

In its chronic course, some 10% of sufferers end their lives
by suicide; and it is estimated only 30% to 40% of patients
are eventually able to lead relatively normal lives, whereby
persons are able to live independently and maintain a job.7,8

Heavy loads rest on patients, families and society, making
schizophrenia one of the leading sources of economic

burden and suffering.9 A study on the quality of life (QOL)
of Singaporean patients found that even those with relatively
good outcomes, who were living with their family without
need for hospitalisation for more than 10 years, had poorer
QOL than general practice outpatients living in the same
area.10 Dissatisfaction with and poorer participation in
family relationships, and dissatisfaction with emotional
well-being were key factors predicting poorer QOL in
patients. Factors associated with cognitive impairment
such as fewer years of education, and poorer reading
abilities were significantly over-represented in patients.
This emphasises a linchpin of its pathophysiology, that of
cognitive deficits, which strongly influence functional and
occupational outcome even after acute psychotic episodes
have abated.6 Conceivably, cognitive deficits also lead to
difficulties processing and responding to nuanced stimuli
relevant for effective social or family interactions,11 and
result in social disabilities and poorer QOL.

Cognitive deficits and other symptoms develop early in
the course of schizophrenia even before the first psychotic
episode. In detailed studies of first-episode psychosis
patients in Singapore, we found that many had already
manifested mood and anxiety symptoms, social withdrawal,
odd mannerisms, deterioration in school results and
perceived disturbances in attention, concentration and
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memory, which occurred years before the onset of
psychosis.12 Compared to unaffected children with nearly
identical Primary School Leaving Examination results at
age 12, individuals who subsequently developed
schizophrenia at ages 18 to 24 had greater deterioration in
GCE ‘O’ Level results by age 16.13 These findings, consistent
with that reported elsewhere,14,15 suggest that the trajectory
of illness development involved a relatively greater
deterioration in cognitive functioning several years before
psychosis onset, possibly interacting with brain systems
implicated in adolescence, mood regulation, anxiety and
stress.

Cognitive deficits are the likely manifestations of
underlying changes in brain function and structure. Genes
(and the environment) could play important roles. Classical
twin and adoption studies from the late Seymour S Kety and
others have established that schizophrenia has a strong
genetic diathesis.16,17 More recent brain imaging studies
have also found that cognitive and functional brain imaging
changes occur not only in patients with schizophrenia, but
also occur more frequently in the unaffected siblings of
patients, including in unaffected monozygotic cotwins,
than in control subjects.18-23 These various brain changes
therefore appear to represent biologic expressions of
increased genetic risk, intermediate between the cellular
effects of susceptibility genes and the manifest
psychopathology.24-26 These genetic links with brain-based
changes should, given advances in brain imaging and
genetic research outlined below, facilitate the elucidation
of the underlying genetic brain mechanisms of cognitive
dysfunction, and potentially advance ideas about new
treatment development.

Working Memory Dysfunction in Schizophrenia
Working memory is a cognitive process that underlies

much of higher-order thinking, language and planned
behaviour. It is what enables us to temporarily hold, update
and work with relevant information.27 Working memory,
which engages prefrontal brain systems, is an example of
a number of cognitive functions that has been repeatedly
shown to underlie cognitive deficits observed in
schizophrenia.28-30 An extensive body of functional imaging
experiments reflect prefrontal cortical physiological
dysfunction in schizophrenia, although the precise nature
of these functional changes are complex and non-linear
(e.g. see Reviews by Callicott31; Tan32). It has been suggested
in recent conceptualisations that an interplay of
dysfunctional and compensatory cortical regions or
networks occur in schizophrenia. For example, we observed
that in response to dysfunctional dorsolateral prefrontal
cortical activation during an executive component of
working memory taxing this very brain region in healthy
individuals, first-episode schizophrenia patients engaged

additional ventrolateral prefrontal regions in negotiating
this task.33 An elaboration of this work suggests that a
larger, putatively inefficient and compensated network of
brain regions are engaged in order for patients to perform
a complex working task with similar accuracy as healthy
individuals.34 These data are consistent with hypotheses
that neural information processing in schizophrenia could
be interfered with by noise components arising from
aberrations in dopaminergic and glutamatergic signalling,35

with resultant increased computational load and brain
plasticity changes to adapt to these functional deficits.

Yet, how are elements of these brain changes related to
the genetic mechanisms of schizophrenia? Indeed,
functional neuroimaging of prefrontal cortical changes
during working memory and cognitive control also have
been observed to be familial and heritable.19,21,36 Specifically,
networks of inefficient prefrontal activity occur in healthy
siblings and twins of patients with schizophrenia. Thus, it
might follow that the genetic mechanisms of these
intermediate cognitive brain processes may be tractable
using these neuroimaging paradigms and genetic approaches
targeted at these prefrontal brain systems.

Imaging Genetics of Human Working Memory and
Prefrontal Brain Systems

Neural mechanisms of working memory have been shown
in animal and computational models to be critically
dependent on dopaminergic modulation of glutamatergic
and GABAergic brain systems during the processing of
maintenance and manipulation of information. For example,
dopamine D1 receptors in brain may allow a focused
augmentation of the task-relevant signal processing in
cortical neuronal networks37,38 by enhancing NMDA-
receptor mediated post-synaptic currents in prefrontal
pyramidal neurons, which are also active during the delay
period.39-41 Concurrently, D1-receptors also trigger a tonic
increase in the firing of GABAergic inhibitory interneurons
acting further afield, reducing irrelevant firing activity
while allowing the focused increase in task-relevant activity,
thus optimising neural signal-to-noise.38

At the human systems level, initial experiments on the
impact of dopaminergic gene variation on cortical function
examined catechol-o-methyltransferase (COMT). This is a
major enzyme in prefrontal synaptic dopamine catabolism
which impacts prefrontal cortical dopamine signaling
because of the relative lack of dopamine transporters
within synapses in this region.42,43 A common polymorphism
in the COMT gene resulting from a valine-to-methionine
Val(108/158)Met substitution gives rise to a significant
reduction in its enzymatic activity.42,44,45 This was found to
correspond to reduced prefrontal dopamine in proportion
to the Val-allele load. Located on chromosome 22q11,
COMT is also deleted in velocardiofacial syndrome, a
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condition that has 20 times increased risk for psychosis.46

However, although this susceptibility locus has been
implicated in some meta-analyses of linkage to
schizophrenia,47,48 the overall effect on risk for schizophrenia
of the specific COMT Val(108/158)Met polymorphism is
small and inconsistent.49-51 This is not surprising given the
manifold factors associated with schizophrenia
pathogenesis, such as the involvement of combinations of
single nucleotide polymorphisms or haplotypes in the
gene,52,53 interactions across different susceptibility genes,54

and interactions between genes and environment.55

In contrast, the effect of the COMT Val(108/158)Met
polymorphism on more specific intermediate measures of
human brain function has reflected predictions from the
basic cellular models of prefrontal dopamine described
earlier. Reduced prefrontal dopamine in COMT Val-carriers
should lead to decreased tonic D1-receptor activation. This
might result firstly, in reduced cortical signal-to-noise; and
secondly, in a relatively inefficient prefrontal cortical
activation pattern if performance accuracy is still
maintained. Using fMRI to study cortical activity, healthy
COMT Val-allele carriers engaged relatively greater
prefrontal cortical activation to perform the working
memory task at the same speed and accuracy as those with
the Met allele; this finding is consistent with the
interpretation that Val carriers are relatively less efficient
without advantages in performance accuracy or reaction
time.56-59 Beyond just the prefrontal cortex, it has been
observed using genetic imaging of COMT that
dopaminergic modulation integral to differing components
of working memory sub-processes occurred with a degree
of spatial and process specificity within the human
prefrontal-parietal-striatal network.59

Interacting Gene Mechanisms on Human Prefrontal
Cortical Function

Glutamatergic abnormalities, in addition to dopamine,
are relevant in schizophrenia and working memory deficits.
The NMDA receptor system is a critical partner in working
memory processes,40,60,61 and disease-related changes in
glutamate signaling impairs working memory. For example,
the metabotropic glutamate receptor, GRM3 on
chromosome 7q21-22, modulates NMDA receptor
transmission.62-64 GRM3 regulates synaptic glutamate via a
presynaptic mechanism and by regulating the expression
of the glial glutamate transporter, which inactivates synaptic
glutamate. A polymorphism in intron 2 and related
haplotypes were significantly associated with schizophrenia
in several samples,62,65-67 though negative studies also have
been reported.68 Risk variants in GRM3 may also influence
alternative splicing of GRM3 mRNA and its products.69 In
postmortem brain, the risk allele is associated with reduced
prefrontal glial glutamate transporter EAAT2, a protein

modulating synaptic glutamate.62 Consistent with the role
of the glutamatergic system in schizophrenia and working
memory, the risk allele was associated with inefficient
prefrontal cortical fMRI activation and reduced working
memory performance even in normal subjects.62

Importantly, given the tight relationships governing
dopaminergic and glutamatergic (and GABAergic)
dynamics in the biology of working memory,61 and their
putatively greater involvement in executive aspects of
working memory at the dorsolateral prefrontal cortex,57,59,70

we would expect that higher-order working memory
processes taxing dorsolateral prefrontal cortex might be
more vulnerable to the combined effect of suboptimal
dopaminergic and glutamatergic influence. Consistent with
the interplay of cortical macrocircuits suggested by these
possibilities, a recent fMRI study revealed that the integrity
of higher executive areas in the dorsolateral prefrontal
cortex could be disproportionately compromised and
inefficient in the presence of combined deleterious COMT
and GRM3 genotypes in normal subjects.71 These subjects
also engaged a larger inefficient and compensated network
of brain regions to negotiate the working memory task,
mirroring patterns observed in patients. Thus, genetic
variation impacting important nodes in the dopamine and
glutamatergic systems at a molecular level, when combined,
had disproportionate or non-additive influence on executive
cognitive brain function at the human systems level that
could be relevant to disease-related mechanisms.

Conclusion
A selection of recent work that integrates clinical

observations of cognitive deficits in schizophrenia with
putative dopaminergic and glutamatergic genetic
mechanisms of prefrontal cortical function was briefly
reviewed.  The study of heritable human neuroimaging
intermediate phenotypes provides an opportunity to examine
component genetic pathophysiology in this uniquely human
brain disease. It is suggested that the complexity of this
disease could be systematically de-constructed with
combinations of multiple neuroimaging paradigms and
genetic markers. Ultimately, the goal is to discover new
treatments that could improve cognitive function in this
disease. Encouraging recent data has suggested that targeting
metabotropic glutamate receptors (including GRM3) were
potentially effective in treating symptoms of
schizophrenia.72  Speculatively, some of the genetic imaging
work71could suggest that these treatments might be
combined with dopaminergic ones to improve working
memory, and monitored by studying the interactions of
dopaminergic and glutamatergic systems in functional
imaging. In the near future, we might well expect
acceleration in work to detail the critical molecular nodes
impacting human cognitive processes, and an exponential
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yield of biomarkers and potential targets for intervention in
the eventual march towards new treatments to improve the
lives of patients and their families.
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