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Abstract
In the advent of an influenza virus pandemic it is likely that the administration of antiviral

drugs will be an important first line of defence against the virus. The drugs currently in use are
effective against seasonal influenza virus infection, and some cases have been used in the
treatment of patients infected with the avian H5N1 influenza virus. However, it is becoming clear
that the emergence of drug-resistant viruses will potentially be a major problem in the future
efforts to control influenza virus infection. In addition, during a new pandemic, sufficient
quantities of these agents will need to be distributed to many different parts of the world, possibly
at short notice. In this review we provide an overview of some of the drugs that are currently
available for the treatment and prevention of influenza virus infection. In addition, basic research
on influenza virus is providing a much better understanding of the biology of the virus, which is
offering the possibility of new anti-influenza virus drugs. We therefore also review some new
antiviral strategies that are being reported in the scientific literature, which may form the basis
of the next generation of antiviral strategies during a future influenza virus pandemic.
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Introduction
Over the past 100 years there have been 3 major influenza

virus pandemics, which have among them claimed millions
of lives. In 1918 the first of these pandemics occurred
suddenly, and without warning. The source of this pandemic
is likely to have been Kansas in the USA, but by the end of
1918 the virus had spread across the globe. Two subsequent
major pandemics followed in 1957 and 1968, but these
were less severe than that experienced in 1918. However,
it is worth noting that during these latter pandemics there
was no adequate time to prepare suitable quantities of
vaccine against the respective pandemic virus strains.
There is currently an influenza virus pandemic among
birds, predominantly involving the highly pathogenic avian
influenza (HPAI) H5N1 virus. It is now known that this
virus can be directly transmitted to humans from birds,
resulting in a high mortality rate in infected individuals.
However, several other avian influenza virus strains have
been reported to infect humans (e.g. H7N7, H7N3, H7N2,
H9N21), and although the most recent cases of transmission
have involved H5N1, it is by no means certain that a new
pandemic will be caused by H5N1. It is difficult to predict

with certainty what vaccine will be effective in a future
pandemic, and a similar scenario to that faced by people in
previous pandemics may arise. The use of drugs against
influenza virus could therefore represent a first line defence
against a new pandemic, allowing the control of the infection
until sufficient quantities of a suitable vaccine can be
produced. In this article we will discuss some of the current
drugs that are available to prevent influenza virus infection,
and describe more recent developments that could make
the transition from “bench to bedside” in the near future.

The Current Anti-influenza Drugs
Amantadine is effective against all influenza A virus

types,2,3 and was originally approved in 1976 for the
treatment of influenza A virus infection. Several
formulations of amantadine are currently available on
prescription (e.g. Symmetrel®). It should be administered
as soon as possible after the onset of symptoms, and
continued for at least 2 days after the disappearance of
symptoms. A number of reports have suggested that
amantadine treatment is associated with several side effects,
including dizziness, insomnia, nervousness and nausea.4
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Rimantadine (Flumadine®) is also available on prescription,
and although it is closely related to amantadine, it exhibits
fewer side effects in treated individuals.

In the final stage in the virus entry process, the virus
genomic segments must be released from the incoming
virus particle, to allow transport of the virus genome to the
cell nucleus,5 and the virus encoded matrix-2 (M2) protein
plays an important role in this process. It exhibits an
essential ion channel activity that allows the transport of
hydrogen ions (H+) across the virus envelope into the
internalised virus particle.6,7 This increases acidity within
the virus particle causing the dissociation of the virus gene
segments from the internalised virus particle.8 Amantadine
binds to the transmembrane region of the M2 protein and
blocks the membrane pore,9-11 thus preventing the uncoating
process.12 In HPAI viruses (e.g. H5 and H7), amantadine
also acts by inhibiting the final stages of influenza virus
maturation. In all influenza A viruses, the HA protein is
initially synthesised as an inactive precursor (HA0) that is
activated by proteolytic cleavage into 2 smaller protein
subunits, called HA1 and HA2.13 In HPAI viruses, the HA
protein undergoes intracellular cleavage in the trans-Golgi
urea, and this activated intracellular form of the HA protein
can prematurely change into its fusogenic form in the more
acidic post-Golgi compartments. In these viruses, the M2
protein protects the HA protein by maintaining the pH in
these cell compartments close to neutral.14

Early studies demonstrated that drug-resistant viruses
were readily generated in tissue culture in the presence of
amantadine, and that these mutant viruses appeared to
grow as well as wild type viruses.15 These mutations gave
rise to specific amino acid changes in the transmembrane
region of the M2 protein that prevented amantadine
binding.9,10 Several early studies showed that administering
amantadine to people resulted in the production of drug-
resistant viruses,16-19 and more recent epidemiological
studies have demonstrated that amantadine-resistant
influenza virus strains are currently circulating in several
countries.20 Furthermore, in addition to human influenza
virus isolates, the emergence of amantadine resistance has
also been observed in avian influenza viruses.21 Since drug-
resistant mutants are readily generated in the presence of
amantadine, the drug is not recommended as a prophylactic
for seasonal influenza, suggesting that amantadine may be
of limited use in a future pandemic.

At the same time as the development of amantadine, the
efficacy of other drugs that were able to inhibit influenza
virus replication was examined. Ribavirin is a nucleoside
analogue that interferes with the duplication of either DNA
or RNA.22-24 Early studies showed that, in tissue culture,
ribavirin was effective against influenza A and B,25,26 and
some studies have suggested that it may be effective in the

treatment of influenza virus. However, carefully controlled
clinical studies to study the efficacy of ribavirin in patients
infected with influenza virus have given inconsistent
results.27 Although ribavirin is recommended for the
treatment of several virus infections, including respiratory
syncytial virus and hepatitis C virus,28 it is currently not
approved by the Food and Drug Administration (USA) or
Health Protection Agency (UK) for the treatment of
influenza virus infection.

Partly as a result of the emergence of amantadine-
resistant influenza viruses, alternative antiviral strategies
have been developed. The sialidase activity in the virus
neuramindase (NA) protein plays a critical role in the
influenza virus replication cycle, and the design of NA
protein inhibitors is currently one of the most common
approaches in the development of anti-influenza virus
drugs. The NA protein was the first virus glycoprotein for
which a high resolution molecular structure was obtained.29

Subsequent functional and structural studies of the NA
protein have allowed several pharmaceutical companies to
produce NA inhibitors using a structure-based inhibitor
design. Zanamivir and oseltamivir are the 2 virus NA
inhibitors that are currently available for the prevention of
virus infection (see review30). These drugs target the active
site of the NA protein, thus inhibiting its sialidase activity
that is essential for virus release (see review31). They are
effective both in vitro and in vivo, and are effective against
both influenza A and B viruses. Zanamivir was the first NA
inhibitor available, and it is currently marketed by
GlaxoSmithKline under the market name of Relenza®.
Oseltamivir, initially developed by Gilead Sciences, is
currently produced by Hoffman-La Roche under the market
name of Tamiflu®. These drugs, in particular oseltamivir,
are currently the primary drugs available for the prevention
of influenza virus infection. An injectable form of NA
inhibitor called peramivir has been developed by BioCryst
Pharmaceuticals Inc, and it is currently undergoing phase
II clinical trials in the USA.

Although zanamivir and oseltamivir are similar in their
mode of action, the drugs have different biochemical
properties, which influence how they are administered.
Due to the poor bioavailability of zanamivir it must be
administered by inhalation,32 and there have been several
reports of respiratory complications following the inhalation
of Relenza®.33,34 The route of administration has been a
major reason for the limited use of zanamivir by the public.
In contrast, oseltamivir is administered orally as a pro-drug
ester, usually as oseltamivir carboxylate. Once administered,
the pro-drug is processed by human carboxyesterase into
its active form.35 It is currently the drug of choice for the
prevention of influenza virus infection, and as a consequence
it is being stockpiled by organisations in many countries in
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anticipation of a pandemic.36 Although it has general
acceptance by the public, there have been a series of reports
regarding serious side effects that are associated with the
drug, which have included nausea and vomiting.37 In rare
cases, neurological side-effects have been reported that
have led to several deaths among teenagers,38,39 and in some
countries warnings have been issued about administering
oseltamivir to this age group.40

Early studies on the effect of oseltamivir and zaminivir
on influenza virus replication in tissue culture showed a
variation in the degree of susceptibility of several virus
isolates,41 and the degree of drug susceptibility for each
virus correlated with the affinity of its HA protein for sialic
acid.42 The prolonged passage of influenza virus in tissue
culture in the presence of these drugs led to the emergence
of drug-resistant mutants, which exhibited amino acid
changes in both the HA and NA proteins.43-46 The changes
in the HA protein reduced the affinity of the virus for its
sialic acid receptor, and presumably reduced its dependency
on the NA protein. There is no evidence of the emergence
of drug-resistant viruses in patients treated with zanamivir,
which is presumably a reflection of its low usage. However,
drug-resistant H3N2 and H1N1 viruses were isolated from
oseltamivir-treated children,36,47 and the emergence of drug
resistance in patients infected with H5N1 has been reported
in Vietnam.48

Anti-influenza Drugs, the Future Perspective
The available evidence suggests that the current drugs

used to prevent influenza virus infection eventually give
rise to drug-resistant viruses. Furthermore, a pandemic will
potentially involve a greater part of the world’s population,
requiring the capacity to mass produce effective drugs on
a global scale. These are 2 major factors that are driving the
search for new antiviral strategies that are both efficacious
in preventing influenza virus infection, and that will be
cost-effective. There are many potential anti-influenza
virus strategies that are currently being described in the
literature that may become effective in the clinic, and here
we will examine some of these different approaches.

Although the virus polymerase is an obvious therapeutic
target, there is currently no high-resolution structural data
for the proteins that form the virus polymerase complex.
This has hampered the development of polymerase inhibitors
using a structure-based approach. Although most of the
current focus is on the development of drugs which target
the activity of the NA protein, agents that target the HA are
also effective in the laboratory setting. These agents have
a great potential to be developed into antiviral drugs for the
treatment and prevention of influenza virus infection, and
the availability of several high-resolution HA structures
should facilitate their further development.49

There is a long history of the use of passive immunisation
to control virus infections (see review50), and humanised
antibodies that exhibit neutralising activity are currently
being developed for the treatment and prevention of several
viruses. In at least 1 case, a humanised monoclonal antibody
against the respiratory syncytial virus (RSV) fusion protein
(e.g. Synagis® from MedImmune) has been approved for
clinical use, and has been used for several years in the
prevention of RSV infection in hospitalised high-risk
patients.51 Similarly, antibodies against the HA protein that
can neutralise virus infection (e.g. by blocking cell
attachment52) can be potentially developed into an effective
influenza virus prophylactic. In mice challenged with
influenza A virus, neutralising antibodies to the HA
glycoprotein was shown to be effective both as a prophylactic
and a therapeutic.53 Several candidate antibodies against
H5N1 have been identified, and have found to be effective
in neutralising the virus infectivity in tissue culture and in
experimental animals. Recent studies found that equine
hyperimmune globulin F(ab’)2,54 humanised mouse
monoclonal antibodies55 and human monoclonal antibodies
generated from the memory cells of recovered patients,56

protected mice infected with H5N1. Although antibody
escape mutants represent a serious drawback,57 it is
envisaged that several different humanised antibodies given
in combination may facilitate their longer term effectiveness.
Although immunoprophylaxis using humanised antibodies
could be an option during a pandemic, the probable high
cost to mass produce them is an obstacle. An even more
serious obstacle in the advent of a sudden pandemic will be
the lag-time that may be required to produce sufficient
quantities of the humanised antibodies, particularly in the
advent of a new virus subtype for which neutralising
antibodies are not yet available.

Short interfering (si)RNAs are double-stranded RNA
duplexes that are able to inhibit the expression of specific
genes by inducing sequence-specific degradation of target
mRNA through the RNA interference (RNAi) pathway
(see review58). RNAi as a generic antiviral strategy is
efficacious, both in vitro and in animal models, against
several viruses, including influenza A virus (see reviews59,60).
siRNAs designed against conserved sequences in the
influenza A virus nucleoprotein, acidic polymerase and
matrix genes, are able to suppress virus replication in tissue
culture, and significantly reduced virus yields in tissue
culture, and in the lungs of infected mice.61-64 The antiviral
effect was shown to be due to specific degradation of virus
mRNA and was effective against a broad spectrum of
different human and avian influenza subtypes.63 There are
currently several biotechnology companies developing
RNAi-based drugs for clinical use. Alnylam
Pharmaceuticals (see http://www.alnylam.com for further
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details) have successfully completed phase I clinical trials
for siRNAs against the human RSV in mid-2007, showing
that administration of the siRNAs was well-tolerated and
safe. A Phase II clinical trial is currently in progress to
determine the efficacy of the siRNA drug in volunteer
patients, and initial reports indicate that the drug
demonstrated “statistically significant antiviral activity”.65

Alnylam, in collaboration with Novartis, is also conducting
preclinical trials for siRNAs against influenza virus. One
of the major advantages of RNAi-based therapeutics in a
pandemic influenza situation is that the design of specific
siRNAs only requires knowledge of the gene sequence,
and the siRNAs synthesis can be achieved within a short
period of time and at relatively low cost. However, there
have been reports that some antiviral siRNA molecules can
exhibit off-target effects that inhibit the expression of some
host genes.66,67 Therefore, before a siRNA approach can be
used in the clinical scenario, it will have to be carefully
evaluated to examine its specificity in silencing virus gene
expression.

One of the key challenges in RNAi-based therapeutics is
the issue of delivery to specific cells or tissues, especially
in the case of a systemic disease. Selective non-viral
methods of delivery include siRNAs coupled to
nanoparticles coated with receptor-targeting ligands,
antibody-fragments or aptamers.68-70 For long-term delivery
of RNAi-drugs, viral delivery methods using lentiviruses
and adenoviruses have been examined.71,72 Reduced lung
titres and pulmonary pathology were observed in mice
infected with RSV when “naked” siRNAs or siRNAs
coupled to nanoparticles were administered intranasally.73,74

Likewise for influenza, siRNAs delivered intranasally
could be effective both as prophylactic and therapeutic
agents.

Many RNA viruses replicate their virus genome via a
double-stranded RNA intermediate, referred to as a
replicative intermediate (RI). Such molecules are not
produced in the host cell, and their presence in mammalian
cells stimulates an antiviral response. This is mediated by
a Toll-like receptor 3 (TLR3) which is able to recognise the
RI, resulting in the production of alpha/beta interferon
(IFN-α/β).75 Molecules have been synthesised that mimic
the structure of RIs, and these are being evaluated as
antiviral drugs. Studies using synthetic dsRNA molecules
composed of polyriboinosinic polyribocytidylic acid
(poly[I:C]) have been effective in countering influenza
virus infection.76,77 It is envisaged that a similar method to
deliver these molecules as that described for siRNA could
be used. Although the data obtained in the laboratory looks
promising, it remains to be established if this approach will
be effective in preventing influenza virus infection in
human patients.

Over the past 20 years there has been an increasing
knowledge on how the influenza virus is able to interact
with the host cell during virus replication, and in particular
the role that host cell factors play in the virus replication
cycle.78,79 Although many current antiviral strategies focus
on drugs that inhibit activities associated with specific
virus proteins, it is perhaps worth mentioning drugs whose
antiviral activities may arise because they modify a host
cell activity that is essential for virus replication, which
may be beneficial in the treatment of acute virus infections.
The activity of these drugs will be more generic in nature,
and should potentially have a broad-spectrum antiviral
activity, and many of these potential drugs are currently
available for the treatment of other medical conditions. In
the final part of this review, 2 of these approaches will be
briefly discussed.

Chloroquine has been used for several years in the
treatment or prevention of malaria caused by Plasmodium
falciparum.80 Although the appearance of drug-resistant
parasites has started to limit its use in malaria control,
chloroquine also inhibits bacterial and fungal growth (see
review81), and its efficacy as an antiviral is currently being
evaluated. Treatment of cells with chloroquine elevates the
endosomal pH, and previous studies have demonstrated its
inhibitory effects on influenza virus replication.82,83 More
recent studies have re-examined its anti-influenza activity
in tissue culture, and the available data is encouraging,84,85

but it will need to be further evaluated to determine its
efficacy as an anti-influenza virus drug in humans.
Furthermore, chloroquine treatment can cause side-effects
in humans,86,87 and the effects of taking this drug on a long-
term basis will have to be evaluated.

Work in several laboratories have shown that during
influenza virus replication specialised host-cell membranes
called lipid-rafts play an important role in the virus
maturation process.88-90 Lipid-rafts are characterised by the
enrichment of certain classes of lipid, including cholesterol,
that are important for their stability. Drugs that are
collectively referred to as statins are currently available for
the treatment of individuals with abnormally high cholesterol
levels in their blood. These drugs are also able to disrupt
lipid-raft membranes by removing membrane-bound
cholesterol, and in so doing are able to inhibit the assembly
process of influenza virus in tissue culture.90 The role that
lipid-rafts play during RSV replication has been
established91,92 and recent studies have shown that lovastatin-
treated mice exposed to RSV did not show the symptoms
associated with RSV infection e.g. weight loss.93 This has
suggested that statins may be an effective drug in treating
virus infection, including influenza virus. In 2 recent studies,
it was observed that people taking statins were less likely
to develop severe complications that are associated with
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influenza virus infection,94,95 and the reason for this is
currently unclear. Although lipid-rafts play an important
role in the virus maturation process, they are also pivotal to
many cellular processes, including cell signalling pathways.
Some cytokine signalling pathways are associated with
lipid-rafts, and it is possible that statins may counter the
detrimental effects of virus infection that arise by excessive
cytokine production i.e. preventing a cytokine storm.
Although side-effects have been reported in individuals
receiving these drugs, the extent and type of side effect
reported is dependent on the type of statin involved.
However, given the reported immunomodulatory effects
of statins, the consequences of their long-term use during
an influenza pandemic will have to be carefully evaluated.

Conclusion
Since the last influenza virus pandemic, our knowledge

of how influenza virus interacts with its host has greatly
increased. This increase in knowledge has not only
facilitated our understanding of the biology of influenza
virus, but has opened up new avenues in the search for
antiviral strategies. It is clear that the development of new
antiviral strategies will not be a major limitation in
countering a new pandemic. However, it is likely that
during a pandemic people that live in many parts of the
world will not be able to afford the cost of drugs that are
expensive to produce. One of the major challenges in a new
pandemic will be the availability of anti-influenza virus
drugs that can be easily mass produced, and distributed to
all parts of the world. This challenge will require a
partnership between researchers, government bodies and
the pharmaceutical industry.
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