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Abstract
Fears of a potential pandemic due to A(H5N1) viruses have focussed new attention on our

current vaccines, their shortcomings, and concerns regarding global vaccine supply in a
pandemic. The bulk of current vaccines are inactivated split virus vaccines produced from egg-
grown virus and have only modest improvements compared with those first introduced over 60
years ago. Splitting, which was introduced some years ago to reduce reactogenicity, also reduces
the immunogenicity of vaccines in immunologically naïve recipients. The A(H5N1) viruses have
been found poorly immunogenic and present other challenges for vaccine producers which
further exacerbate an already limited global production capacity. There have been some recent
improvements in vaccine production methods and improvements to immunogenicity by the
development of new adjuvants, however, these still fall short of providing timely supplies of
vaccine for all in the face of a pandemic. New approaches to influenza vaccines which might fulfil
the demands of a pandemic situation are under evaluation, however, these remain some distance
from clinical reality and face significant regulatory hurdles.
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Introduction
The ongoing epizootic of avian influenza due to A

(H5N1) viruses, the growing count of associated human
fatalities, and the fear that this may be the forerunner to a
severe human pandemic have focussed new attention on
the status, and in particular the shortcomings, of our current
human influenza vaccines. It is now over 60 years since the
demonstration that influenza viruses could be readily
cultivated in the allantois of embryonated hens’ eggs1 and
the subsequent application of this method of cultivation to
prepare inactivated virus vaccines that were protective
against infection.2 Remarkably, despite the developments
in viral vaccines for other illnesses including living
attenuated vaccines, the application of large-scale cell
culture and of recombinant technology,3,4 there have been
only modest improvements in the influenza vaccines. The
bulk of those that are used currently are still inactivated
virus vaccines prepared from egg-grown viruses. This,
together with unique difficulties encountered with attempts
to produce effective human A(H5N1) vaccines, has lead to
grave concerns regarding the global vaccine supply in the
event of a pandemic.5

The History of Influenza Vaccine Development
Early influenza vaccines were rather crude, impure

preparations manufactured by methods such as adsoption
to and elution from chicken erythrocytes and high speed
centrifugation or freeze-thawing of virus-containing
allantoic fluid harvests.6 These induced a high incidence of
both local and systemic reactions,7 particularly in infants
and children.8 It was generally considered at that time that
this was due to an inherent ‘toxicity’ of inactivated influenza
virus.7,9 However, the development of more highly purified
products by the introduction of the continuous-flow zonal
ultracentrifuge demonstrated that much of the reactogenicity
had been due to impurities rather than the virus itself.10,11

Nevertheless, infants and young children still displayed a
high rate of systemic reactions to these more highly purified
vaccines.12,13

Prior to the routine use of improved purification methods,
it had been demonstrated that a vaccine prepared using
disruption or ‘splitting’ of the virus with Tween-80 and
ether was largely devoid of systemic reactivity compared
with the standard vaccine, although, it was unclear whether
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the splitting per se or other aspects of the additional
processing involved were responsible for the reduction in
toxicity.14 Because ether represents an explosion risk in
large-scale manufacturing, various detergent treatments
were introduced for the preparation of split vaccines.
Sodium deoxycholate was adopted for preparation of a
commercial vaccine,15 based on animal studies
demonstrating that treatment reduced pyrogenicity of
influenza ‘vaccines’ in experimental animals.16 However,
the vaccines used in these animal studies had not undergone
an inactivation step, hence, there is a real possibility that the
demonstrated reduction in pyrogenicity simply represented
detergent inactivation of the virus. Nevertheless,
deoxycholate-treated vaccines were shown to have reduced
reactogenicity in both adults and children.15,17,18 In addition,
it is known that deoxycholate dissociates bacterial
endotoxins,19,20 a common contaminant of egg-grown
influenza vaccines21 and a likely contributor to residual
pyrogenicity for infants and young children in purified
whole virus vaccines, and this may contribute to the observed
benefit.

Shortcomings of Split Inactivated Virus Vaccines
While split vaccines demonstrated similar immuno-

genicity to whole virus vaccines in immunologically
‘primed’ individuals22 studies conducted in children at the
time of the perceived pandemic threat from swine influenza
in 1976, and then with the re-emergence of the H1N1
subtype in 1977, demonstrated the inferiority of split
vaccines compared to whole virus preparations for
immunising individuals who had not been immunologically
primed by exposure to the same viral subtype and also
demonstrated the need for 2 vaccine doses as would be the
case in a future pandemic.23-25 This together with
observations with influenza B vaccine in children13 and
response studies in mice26 foreshadowed potential problems
in vaccinating against a future pandemic. However, these
observations went largely unheeded for the next 2 decades.

Of the 2 immunologically distinct types of influenza
viruses, A and B, responsible for major outbreaks and
severe disease in humans, only influenza A has been
known to be associated with pandemic influenza. Influenza
viruses have 2 exposed glycoprotein antigens on their
surface, the haemagglutinin (HA) which is the major
antigen, and an enzymically active neuraminidase (NA).
The haemagglutinin is responsible for attachment to cell
receptors to initiate infection and the neuraminidase has a
role in release of the virus from the cell by receptor
removal. It is generally accepted that immunity to infection
in humans, particularly that acquired by vaccination with
the current inactivated virus vaccines, correlates closely
with the level of circulating antibodies against the viral
haemagglutinin;27,28 it is type and sub-type specific and also

largely strain specific.29 For both influenza A and influenza
B the 2 surface antigens display gradual, ongoing antigenic
variation, referred to as antigenic drift, which allows the
viruses to escape immunity acquired through infection or
vaccination.29 This necessitates global surveillance to track
these antigenic changes and twice yearly updating of
vaccine formulations to provide effective vaccines against
seasonal influenza.30

In addition, influenza A viruses with 3 quite antigenically
distinct haemagglutinins and 2 distinct neuraminidases
have circulated in the human population since laboratory
studies commenced and the influenza A viruses have been
divided into subtypes based primarily on their HA
proteins.31,32 Last century saw the appearance of new
influenza A HA subtypes in the human population in 1957
(H2 subtype) and 1968 (H3 subtype) which were associated
with pandemic influenza and there is evidence that the
1918-19 Spanish Influenza pandemic, and possibly those
late in the nineteenth century, were also associated with the
emergence of new HA subtypes. This is referred to as
‘antigenic shift’33 and it is known to occur when an influenza
A virus emerges in the human population with a new HA,
with or without a new NA, derived from an avian influenza
virus. While there may be some evidence of weak, short-
lived cross-subtype immunity in humans following
infection,34 there is no evidence that current inactivated
vaccines confer such hetero-subtypic immunity.

Supply Issues for Pandemic Vaccines
The whole process of preparing egg-grown influenza

vaccines is a lengthy one, taking up to 6 months or more to
meet the demand for seasonal influenza vaccine.35 Once the
antigenic characteristics required for a vaccine virus have
been established based on the World Health Organization
(WHO) surveillance programme,36 a suitably qualified
strain must be selected and adapted to provide a satisfactory
yield. For influenza A viruses, this is currently achieved by
a long-accepted ad-hoc genetic reassortment involving co-
infection with a laboratory strain of virus.37 On occasions,
the availability of a suitable strain or high-yield reassortant
has proven limiting for vaccine availability.38 However,
efficient ‘reverse genetics’ procedures using cloned DNA
copies of the virus gene segments to construct directed
reassortants now offer several potential advantages.39

Reagents, including a calibrated reference antigen and a
hyper-immune serum against highly purified
haemagglutinin from the vaccine strain, must be prepared
for vaccine standardisation which is based on an
immunological assay;40,41 calibration of the reference antigen
is performed by collaborative assays carried out by
international regulatory bodies and this process may, on
occasions, contribute to delays in vaccine availability.
Additional limitations on seasonal vaccine availability are
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imposed by the need to plan 6 months ahead for availability
of sufficient numbers of embryonated eggs with the correct
characteristics, the fact that egg-handling capacity is usually
not readily scalable, and that isolation and passage of
influenza viruses in eggs can adversely alter their
immunogenicity.42

For a pandemic vaccine, particularly should the cause be
an H5N1 virus, the shortcomings of the current vaccines
and their production processes would be further amplified.
Recent estimates place global production capacity for
influenza vaccines at around 300 to 350 million doses of
trivalent vaccine, at the standard dose of 15 μg of HA
antigen per strain over a 6 to 12 month period.5,43 This
would translate to around 1000 million doses of a
monovalent vaccine or sufficient to fully immunise 500
million people. However, it must be remembered that past
pandemics have spread essentially worldwide within around
6 months and it may be anticipated that a future pandemic
would travel at least as quickly.44 The currently circulating
H5N1 viruses, considered as a potential pandemic precursor,
are highly pathogenic for domestic poultry and for
embryonated chicken eggs, a property conferred by the
multibasic cleavage site in the viral haemagglutinin.45 The
viruses also represent a threat to vaccine production staff;
hence, it is not feasible to produce egg-grown vaccines
without modifying the haemagglutinin using reverse-
genetics.46 However, the use of this technology has
intellectual property implications and may also impose
additional regulatory requirements.47

The prospect of increasing pandemic vaccine supplies by
the use of a reduced antigen content vaccine was
demonstrated in clinical trials of vaccines against the re-
emergent H1N1 influenza in 197748 and with alum
adjuvanted formulations of H2N2 and H9N2 whole virus
vaccines.49 Unfortunately, early human trials with an
adjuvanted vaccine,50 and with a recombinant antigen
vaccine,51 both demonstrated poor responses to the H5
haemagglutinin suggesting that the human response to this
subtype may be atypical. In addition, measuring the
serological response to H5 has been complicated by the
apparent insensitivity of the conventional haemagg-
lutination-inhibition test for H5 antibody.52 The poor
response to the H5 HA has subsequently been borne out in
trials with conventional split virus vaccines53,54 although
the immunogenicity of a whole virus vaccine, as shown
earlier for the H1N1 subtype, does appear more acceptable.55

Adding alum adjuvants to these vaccines has not produced
major improvements54,55 while the recently registered oil in
water adjuvant MF-59 did display significant enhancement
of antigenicity.56 Therefore, the probability of formulating
effective lower antigen content vaccines seems unlikely. In
fact, we may face the prospect of needing to increase
antigen content. Yet a further impediment to H5N1 vaccine

production is the poor yields, reported by vaccine
manufacturers, for the available vaccine strains prepared
by reverse genetics.57

Clearly, our current pandemic preparedness and response
is compromised by this restricted capacity to produce
sufficient vaccine to meet the probable global demand.
This also raises ethical issues regarding equity of supply for
developing countries43and the responses that this may
provoke.58 Even if the capacity to produce current vaccines
was greatly increased, cost may still represent a barrier to
access for many populations.5 One short-term response to
the H5N1 threat, by both WHO and national governments,
has been to stockpile vaccines prepared from available
H5N1 isolates;59-61 however, there are currently multiple
lineages of antigenically diverse H5N1 viruses
circulating62,63 and the importance of a close antigenic
match has been repeatedly demonstrated with seasonal
influenza vaccines.64 Nevertheless, a contributing factor to
the severity of pandemic influenza is certainly the
immunological naivity of the population at large and of
individuals. Cross-reactivity of antibodies to the various
clades of H5N1 have been demonstrated in human trials,
particularly with adjuvanted vaccines,56,65 and the potential
value of antigenic priming for subsequent vaccination
against an antigenically drifted H5 variant has recently
been reported,66 which is similar to results obtained for
H3N2 subtype vaccination in immunologically naïve
infants.67 The potential value of either stockpiling or priming
the population61 in the face of a pandemic threat should not
be underestimated.68 However, as demonstrated by the ill-
fated ‘swine influenza’ vaccination programme undertaken
in the USA in 1976, there are a number of legal and ethical
issues associated with vaccination ahead of ongoing human-
to-human transmission of an influenza virus. In particular,
the potential of litigation for adverse events is something
that needs to be addressed by national authorities.69,70 In
addition, neither stockpiling nor pre-pandemic vaccinations
will be an option if a subtype, other than H5, should appear
without warning as in the 1957 and 1968 pandemics.
Recent human infections with H7 and H9 influenza viruses71

and earlier studies showing serological evidence of human
infection with a number of avian influenza subtypes
highlight such a possibility.72

Recent Improvements in Influenza Vaccines and their
Manufacture

What then, is required to rectify the deficiencies of our
current vaccines and what progress have we made to date?
There are a number of features that would be highly
desirable in an influenza vaccine for both seasonal and
pandemic use including simplified, more rapid production,
lower cost and ability to induce broad long-lasting protective
immunity, preferably with heterosubtypic protection.
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Although seasonal influenza vaccines play a valuable role
in protecting individuals, particularly those at high risk of
serious illness, there have been attempts to overcome the
reduced effectiveness due to immunological senescence in
the elderly,73 and the effects of ongoing antigenic drift,64 by
the use of immunological adjuvants.74-79 While studies in
immunologically naïve animals usually show a significant
adjuvant effect, the results in an immunologically primed
human population have been marginal for seasonal influenza
vaccines.74,79 The potential benefits of adjuvants in a
pandemic situation are more akin to the animal studies and
this is where they could prove valuable, possibly reducing
the required antigen content by 4-fold or more for H5N1
vaccines and improving the breadth of immunity.56,65

However, while the antigen-sparing potential of new
adjuvants may significantly increase vaccine supply using
egg-grown antigens, this alone will not be sufficient to
ensure global pandemic availability in a timely fashion, nor
does it seem likely that it will reduce vaccine cost. The
capacity to produce the adjuvants in sufficient quantity,
and their cost, will become an important consideration.

The potential benefits of developing cell culture based
influenza vaccines, particularly in the pandemic context,
have been recognised for many years.80 Manufacturers
have evaluated a variety of cell lines for this purpose81,82

and several vaccines for seasonal influenza are close to
commercialisation. In addition, recent encouraging results
have been reported for the large-scale growth of H5N1
virus in Vero cell culture.83 There is no doubt that cell
culture overcomes a number of the difficulties associated
with egg-grown vaccines including bacterial contamination,
bio-containment of viruses pathogenic for production staff,
rapid start up of production and probably, ease of scalability.
Nevertheless, production capacity will still be constrained
by economic considerations and cost will remain an
important limitation for widespread access to vaccine.
Another very promising approach to improved vaccine
production, under development for several years84 and is
now close to fruition,85 is the use of a baculovirus expression
system to produce recombinant viral haemagglutinin in
insect cell culture. This method has been shown to produce
immunogenic haemagglutinin antigen for a wide range of
influenza viruses.86 It is claimed that trivalent vaccines
containing 45 μg of haemagglutinin antigen, 3 times the
normal vaccine level for each strain, are more immunogenic
than standard egg-grown vaccines. Hence, they may provide
broader protection than standard vaccines,87 and that “these
doses are well within the production capacity of the system
at an economically and logistically feasible scale”.85

Although early trials with an H5 haemagglutinin vaccine51

demonstrated poor immuno-genicity, it was subsequently
found that the results were essentially the same as those for
conventional split egg-grown vaccines. The claimed

economics and logistics of production, together with the
fact that production neither requires modification of the H5
haemagglutinin, nor handling large quantities of living
virus, offer substantial potential advantages. This should
be further enhanced if the vaccine could be formulated with
one of the newer adjuvants.

Living attenuated influenza vaccines based on cold-
adapted master strains have been in use for some time in
Russia88 but only more recently in the USA89 and have been
shown to give improved breadth of protection than
inactivated split virus vaccine against drifted influenza
strains.90 To date, the vaccines have been produced by
growth in eggs and while they yield more vaccine doses per
egg than inactivated vaccine, production capacity and cost
are adversely affected by the current regulatory requirement
for the use of specific pathogen free eggs for manufacture.89,91

Thermal stability of the vaccines and some safety aspects
have been identified as requiring further attention.92 The
cold-adapted phenotype can be quickly and reproducibly
engineered into seasonal or potential pandemic vaccine
strains by reverse genetics and a candidate H5N1 vaccine
has demonstrated broad immunity in animals.93 It remains,
however, to be demonstrated that this will be the case in
humans. There are perceived risks in pre-pandemic
administration of living vaccines containing novel
haemagglutinin subtypes to humans as this might potentially
lead to a reassortment event and generation of a pandemic
virus. Therefore, such use needs to be carefully controlled.
There also remain regulatory concerns regarding the
generation of vaccine strains by reverse genetics in some
jurisdictions.91 Under current constraints, living attenuated
vaccines have had little impact on control of seasonal
influenza and do not show immediate promise for pandemic
control. However, the relaxation of the regulatory
requirement for specific pathogen free eggs or, alternatively,
a move to cell culture-based production, could significantly
alter this situation.

A Universal Vaccine – The Ultimate Goal
Beyond these more immediate potential improvements

to influenza vaccines and their production, there are a range
of other longer-term options under evaluation and
development.  Induction of effective levels of anti-
haemagglutinin immunity by delivery as a plasmid DNA
vaccine has been claimed91 and, while the production of
DNA may be both rapid and inexpensive, economical
delivery systems have yet to be described. The potential for
use of plant cells for influenza virus haemagglutinin vaccine
production has also recently been reported.94,95 Regardless
of the progress with conventional surface antigen vaccines,
the ultimate quest for influenza virologists is a vaccine that
will not only protect against antigenic drift but also against
the antigenic shifts in influenza A that are associated with
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pandemic influenza. This would require a vaccine to be
more effective than the natural immunity acquired by
infection as it appears that there is only limited
heterosubtypic immunity induced by infection in humans.34

It has been proposed that such vaccines could exploit either
cell-mediated immunity (CMI)96 or antibody-based97

immunity directed against highly conserved regions of the
viral proteins in influenza A viruses. The principal targets
for a cell-mediated approach are a number of epitopes on
the nucleoprotein and matrix (M1) protein which are
highly conserved across human influenza A viruses.96,98

However, while CMI alone may protect against severe
illness and death, it will not protect against infection.

The favoured targets for an antibody-based vaccine are
conserved regions on the haemagglutinin, which are found
on the HA2 stem of the molecule or around the loop region
where proteolytic cleavage takes place, and the ectodomain
of the influenza A virus M2 protein (i.e., that short region
of 23 amino acids on the outer viral surface) which occurs
in small copy numbers in viral particles but in larger
numbers on the surface of infected cells.97,99 Currently, the
greatest attention and progress appears to be focussed on
vaccines based on the M2 ectodomain (M2e) employing a
variety of constructs, adjuvants and delivery systems,97,100

including M2e-hepatitis B core antigen90,99 and flagellin
constructs101 and virus-like particles.102 Clinical trials of at
least 2 M2e vaccines are currently in progress;103 however,
animal studies have demonstrated that, as for CMI-based
vaccines, M2e vaccine prevents severe illness and death
but not infection and this will present both difficulties in
evaluation of clinical efficacy and regulatory hurdles.91 It
may be that a vaccine combining the conserved epitope
approach with conventional surface antigens of
contemporary circulating viruses may represent the best
answer to these difficulties. Nevertheless, for these highly
mutable viruses the potential effects of increased
immunological pressure on epitopes that have been
relatively conserved to date remain unknown.

Regulatory Processes and Pandemic Vaccines
Regardless of other factors, a key element in the

availability of pandemic vaccines, both in the short-term
and the long-term, will be national regulatory agencies and
regulatory processes. Vaccines for annual seasonal influenza
present a unique regulatory problem due to the regular
updating of the vaccine strain composition.104 While
licensing processes have been adapted to meet this difficulty,
they are far from uniform across jurisdictions; this means
that vaccine shortages can go unfilled, as occurred in the
USA in 2004-2005.105 The USA has recently published a
guidance document that outlines both the ‘traditional
approval’ and the ‘accelerated approval’ process for new

seasonal influenza vaccines, previously not licensed in the
USA to improve seasonal vaccine supply in the US market.106

However, it has become clear that pandemic influenza
vaccines will differ by more than simply the virus strain(s)
compared to those used for seasonal influenza, that this will
impact on licensing and will pose additional challenges for
regulators.104  To deal with this regulators have developed
pandemic vaccine licensing strategies. The European
Agency for the Evaluation of Medicinal Products (EMEA)
adopted a strategy based on a ‘mock up’ dossier, in which
vaccine formulation, safety and immunogenicity are
determined for a ‘pandemic-like’ vaccine then, for the
pandemic vaccine, only the virus strain would need to be
updated and licensing quickly achieved;68,107 nevertheless
issues such as individual national requirements for labelling
and product leaflets may still contribute to delays.108 More
recently the EMEA has provided additional guidelines to
cater for the potential use of a pre-pandemic vaccine in the
event that national authorities may wish to conduct pre-
emptive vaccination in the face of a potential pandemic, but
prior to a pandemic being declared.109,110  The USA has also
recently published guidelines, a series of ‘non-binding
recommendations’, for the licensure of pandemic influenza
vaccines.111 For vaccines made by processes currently
licensed for seasonal vaccines in the US, these describe the
process for changing rapidly from the currently-licensed
seasonal vaccine to a new pandemic vaccine by
supplementing the existing license. For new vaccines,
made by a process not currently licensed in the US, they
define pathways for both traditional and accelerated
approval approaches similar to that for new seasonal
vaccines. Accelerated approval allows for evaluation based
on biological indicators likely to demonstrate effectiveness
such as the immune response to the vaccine, however, the
difficulty in measuring the immune response to H5N1
viruses52 may require some modification to the usual
immunogenicity test requirements.

Eventually, our capacity to respond effectively to the
pandemic threat will require the introduction of new
vaccines. These will require new technologies to prepare
the viral antigens, novel adjuvants to improve
immunogenicity, new delivery such as DNA vaccines or
new approaches such as a universal influenza vaccine.112

Regulatory requirements for new vaccines have traditionally
been very demanding105,113 and those for biotechnology-
derived vaccines114 and new vaccine adjuvants115 are still
under development. There will be a need to balance carefully
the risks of rare adverse events against the potential life-
saving benefits of pandemic vaccines. Otherwise, the cost
of undertaking the necessary development and clinical
trials to meet stringent regulatory requirements may prove
a serious disincentive for vaccine manufacturers.112,116
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Conclusions
The WHO has formulated a ‘Global Pandemic Influenza

Action Plan’ to increase vaccine supply which requires an
investment of 3 to 10 billion US dollars and sustained
commitment over a period of 5 to 10 years.117 But the WHO
has recently announced that the global influenza vaccine
supply could achieve 4.5 billion pandemic courses by
2010.118 However, this appears to be based on the assumption
of universal access to the most favourable production and
formulation technologies and ability to pay for the final
product, something that is highly desirable but yet to be
achieved. Also, we must not forget that the production and
administration of vaccine will be a race against the spread
of the pandemic, particularly if there has not been any prior
development and assessment of candidate strains of the
viral subtype involved.119,120 Regardless of recent progress,
the ability to respond globally and equitably to a future
pandemic will require much more rapid and high-yielding
vaccine production capacity than currently available,
preferably at a much reduced cost and this will be influenced
by the regulatory environment; needle-less administration
could also be a distinct advantage.121 The development of
a truly universal vaccine, protective against all influenza A
subtypes, would present the potential opportunity for both
reducing the threat of a pandemic and the impact of
seasonal influenza.
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