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Introduction
Gram-negative bacteria are important causes of urinary

tract infections, bloodstream infections, healthcare-
associated pneumonia, and intra-abdominal infections. The
increasing resistance of Enterobacteriaceae is a signicant
challenge. Worldwide, an increasing prevalence of gram-
negative bacteria with multi-drug resistance profiles is now
recognised.1-3 In this paper, available local data are reviewed
and one will see that our situation is approaching those seen
elsewhere. To further compound the problem, there is also
a dwindling of the antibiotic “pipeline”, with no new
antibiotics targeting gram-negative bacteria available in
the near future.4 The threat is particularly serious with
regard to nosocomial pathogens like Pseudomonas
aeruginosa, Acinetobacter baumannii and extended-
spectrum β-lactamase (ESBL) producing organisms. Hence
in this review, we will look at these specific pathogens
common in the nosocomial setting to appreciate how they
raise real concerns to the future of therapeutic options. A
basic understanding of various resistance mechanisms is
necessary and the reader is referred to excellent reviews
published elsewhere.5,6 Table 1 provides a glossary of
various terms discussed here for easy referencing.

Incidence and Prevalence of Multidrug-resistant Gram-
negative Bacilli

The incidence and prevalence of multidrug-resistant
gram-negative bacilli in Singapore were not previously
collected systematically until a laboratory-based surveillance
programme was established in 2006. This attempted to
monitor the antimicrobial drug-resistance trends of
pathogens in public hospitals. It found disturbing data. Of
all hospital isolates of Klebsiella pneumoniae in 2006,
35.9% were resistant to third-generation cephalosporin.7

Data extracted from various publications from various
individual hospitals in earlier years also supported the fact
that our rates for ESBL carrying organisms are very high
(around 40%).2,8,9 Comparing with data from the MYSTIC
(Meropenem Yearly Susceptibility Test Information
Collection), a resistance surveillance programme in Europe,
our ESBL rates are higher then most European centres
except for those from Eastern European countries such as
Russia (nearly 50%) and Poland (nearly 40%).10 A study
conducted in Tan Tock Seng Hospital in 2006 revealed
that almost 10% of more than 1800 emergency
department attendees were colonised by third generation
cephalosporin-resistant Escherichia coli (Personal
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Abstract
The emergence of multidrug-resistant gram-negative bacteria is challenging the treatment of

serious nosocomial infections. This is an international trend that is mirrored in Singapore too.
Reports of strains resistant to all currently available agents have surfaced here and possibly have
taken root here as well. The direst situation is among the non-fermenters, Pseudomonas
aeruginosa and Acinetobacter baumannii. This is followed closely by the Enterobacteriaceae
family with their array of extended-spectrum βββββ-lactamases, AmpC βββββ-lactamases and
carbapenemases. There are also resistance mechanisms such as efflux pumps and porins down-
regulation that effect resistance against multiple classes of agents. Potentiating these developments
is the dwindling “pipeline” of new agents. Hence, there is a real concern that we are running out
of options for our patients. Novel antibiotic combinations, enhanced infection control, antibiotic
cycling, computer-assisted programmes, and maybe in the distant future, non-antimicrobial
agents is all that we have.
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communication – Dr Brenda Ang).
Even more disturbing was the fact that 69% of all

Acinetobacter spp. isolates at 1 intensive care unit was
carbapenem resistant. Overall, resistance to carbapenems
was 49.6% among all Acinetobacter spp. isolates.7 18.2%
of all Acinetobacter spp. were susceptible to polymyxins
alone. Pan-drug resistant Acinetobacter baumannii strains
have been reported locally too.11 The situation with
P. aeruginosa is only slightly better. Considering that this
agent is virulent and deadly in immunocompromised hosts
who are often exposed heavily to antibiotics (and thus at
risk for more resistant organisms), the occurrence of
carbapenem resistance at 9.6% of all P. aeruginosa isolates
and in up to 27.2% of ICU isolates is much cause for
concern.7 It is no longer unusual to see antibiograms in
tertiary units in Singapore that look like those in Table 2.
To appreciate the situation, it is necessary to go into further
detail with regard to some of these organisms to understand
the threat we face.

Pseudomonas aeruginosa
P. aeruginosa is a common cause of morbidity and

mortality in hospitalised patients. In the Singapore General
Hospital, it is the third most common gram-negative isolate.12

It is a common pathogen among hematological units and an
important nosocomial pathogen. This agent is particularly
fearsome because it is virulent and infects mainly immuno-
compromised hospitalised patients. It is intrinsically resistant
to antibiotics and is able to acquire resistance determinants
leading to the development of multiply resistant strains.13

The diverse array of mechanisms includes an ability to alter
its permeability via the down regulation of porins. It also
has efflux pumps as well as a wide variety of β-lactamases
and aminoglycoside-modifying enzymes.14

Carbapenem resistance in P. aeruginosa with metallo-β-
lactamases such as the IMP and VIM can lead to resistance
to imipenem and meropenem plus the antipseudomonal
cephalopsporins, including cefepime and antipseudomonal
penicillins.15 There has been an increase in carbapenem
resistance seen in various locales in the world with the IMP
genes being reported in increasingly more centres.16,17

Locally, almost 10% of all P. aeruginosa isolates and up to
27% of ICU isolates are carbapenem resistant.7 IMP-1
producing Pseudomonas aeruginosa has been found here
and apparent clonal spread has been documented.18

Fortunately, at this point, it is not common.18 Be it an IMP/
VIM carbapenemases or porins changes (and more
commonly, a multitude of resistant determinants),
multidrug-resistant strains are beginning to show their
mark in hospitals. In these circumstances, the options can
be limited to antibiotics that still have moderate activity.19

When there are no such options, various groups have tried

Table 1. Glossary of Selected Terms

a. 3rd generation cephalosporins: These were able to overcome resistance
caused by common β-lactamases when they first came into use.
Examples, ceftriaxone (Rocephin) and ceftazidime (Fortum).

b. AmpC β-lactamase: This type of broad-spectrum enzyme is usually
encoded on the bacterial chromosome and are inducible by β-lactams.
Mutations result in increased expression and broad-spectrum
cephalosporin resistance in Enterobacter cloacae. Plasmid borne
versions may be responsible for similar broad-spectrum resistance in
klebsiella and salmonella species.

c. Extended-spectrum β-lactamase (ESBL): Originally termed to reflect
the expanded substrate spectrum of enzymes derived from narrower-
spectrum TEM, SHV, or OXA β-lactamases. They are typically not
active against cephamycins (e.g., cefoxitin) or carbapenems
(imipenem, ertapenem, and meropenem), and can generally be
inhibited by inhibitors such as clavulanate, sulbactam, or tazobactam.

d. CTX-M-type ESBLs: Another type of ESBL that has different lineage
from the TEM and SHV type. The clinical implication is the same as
the usual ESBL where carbapenems are the only reliable antibiotic in
serious infection.

e. SHV, TEM, IMP, VIM and KPC: They are all β-lactamase related by
amino acid substitutions. The nomenclature is not standardised and
often confusing. SHV denotes a variable response to sulfhydryl
inhibitors; TEM was named after the patient (Temoneira) from whom
the first sample was obtained; IMP/VIM enzymes are able to hydrolyse
carbapenem and they are integron-encoded metallo-β-lactamase; and
KPC is derived from Klebsiella pneumoniae carbapenemases.

f. Pan-drug resistant: Refers to resistance to all antibiotics usually active
against the pathogen.

g. β-lactam β-lactamase inhibitor combinations: Clavulanic acid,
sulbactam, and tazobactam are inhibitory β-lactams that bind to and
block the action of β-lactamases. Available in combinations with other
β-lactams.

h. Carbapenems: Structurally like penicillins but a carbon atom replaces
a sulphur atom at one position. It has the broadest antibacterial
spectrum compared to other penicillins and cephalosporins and is
generally resistant to ESBL. Examples include imipenem, meropenem,
and ertapenem. Doripenem (the most recent one) is not currently
available in Singapore.

i. Inoculum effect: Increased resistance with increasing numbers of
infecting bacteria as a result of larger inocula of β-lactamase
producing organisms.

j. Porins: In gram-negative bacteria, the inner membrane is the major
permeability barrier. The outer membrane contains proteins that form
channels and these are permeable to antibiotics.

k. Efflux pumps: An energy dependent system of extruding toxic
substance from the bacteria. Some are molecule specific while others
are not, thus contributing to resistance across multiple classes of
antibiotics.

l. Monobactam: A monocyclic β-lactam. The only locally available
example is aztreonam.

m. Plasmid: An extrachromosomal DNA. They often carry resistance
genes.
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combinations for which the supporting clinical data are
sparse and sketchy.20

Polymyxin B has, by default, become our last line
antibiotic (and for many other centres in the world) for this
pathogen. The polymyxins are old antibiotics active against
some gram-negative bacteria, including Acinetobacter
species, Pseudomonas aeruginosa, Klebsiella species and
Enterobacter species. In the early days, there were common
reports of nephrotoxicity and neurotoxicity. As such,
parenteral use became unpopular. Since the late 1990s, it
has become more widely used again because of the
emergence of these multidrug-resistant organisms.

P. aeruginosa with reduced susceptibility to polymyxin
B have recently been reported in New York hospitals.20

Fortunately, many of the polymyxin B-resistant
P. aeruginosa isolates were susceptible to other anti-
pseudomonal agents. For now, pan-resistant isolates are

still uncommon.3,20 However, a greater use of polymyxin B
in centres with high multidrug-resistant Acinetobacter
baumannii can lead to the kind of environment where
polymyxin resistant P. aeruginosa is selected. An analysis
of the above New York hospitals revealed that the increased
use against A. baumannii was likely responsible for the
development of polymyxin B resistant P. aeruginosa.20

Acinetobacter baumannii
Acinetobacter baumannii commonly causes nosocomial

infections, particularly ventilator-associated pneumonia
(VAP). It is responsible for outbreak situations in
neurosurgical intensive care units, in burns units and
traumatic wounds among others.21 Many clinical isolates in
such a nosocomial setting are often resistant to many
antibiotics. Although there are doubts about the attributable
mortality of this agent, it is becoming clear that this
pathogen can cause significant morbidity.22 Carba-
penemases resistant strains and clones are now common. It
is endemic in many intensive care units (ICU) in different
geographic locations.23-25 Analysis of the United States
National Nosocomial Infections Surveillance (NNIS)
System showed an increase from 4% in 1986 to 7.0% in
2003.26 Infections are associated with increased ICU and
hospital stay as well as increased hospitalised mortality.27

Intensive care isolates in some countries including those of
some Asian hospitals already have susceptibility patterns
that meant little available treatment options except with the
toxic polymyxin and colistin.28-30 Sporadic outbreaks with
such strains
have occurred when patients treated in endemic
countries return to their homeland highlighting the rapidity
of spread of these agents in this age of international travel
and globalisation.21 As mentioned above, our local
carbapenem resistance rates are very high especially in
intensive care units and 18.2% of all Acinetobacter spp.
local isolates are susceptible to polymyxin B alone.7 Pan-
drug resistance isolates (i.e., resistant to polymyxin B as
well) have now been reported several times elsewhere and
locally too.11,31

Like P. aeruginosa, A. baumannii too has a diverse array
of resistance mechanisms. It is “naturally transformable”
and possesses genetic elements that facilitate the acquisition
of resistant genes. A recent analysis of a multi-drug-
resistant A. baumannii strain revealed that it had an extra
86-kb region that encoded many resistance determinants
that probably came from other gram-negative bacteria.32 Its
unique ability to survive on dry inanimate surfaces for a
long duration will also potentiate this ability to acquire
resistance genes in a nosocomial setting.33

Like P. aeruginosa, its efflux pumps in A. baumannii
have broad spectrum of activity and are able to extrude

Table 2. Antibiograms of Multidrug-resistant P. aeruginosa and
A. baumannii that are seen in Tertiary Units in Singapore
not Infrequently

Pseudomonas aeruginosa

Susceptibility

Piperacillin/Tazobactam R

Cefepime R

Aztreonam R

Imipenem R

Amikacin R

Gentamicin R

Netilmicin R

Ciprofloxacin R

Polymyxin B S

Acinetobacter baumannii

Susceptibility

Ampicillin/Sulbactam R

Piperacillin/Tazobactam R

Cefepime R

Aztreonam R

Imipenem R

Amikacin R

Gentamicin R

Netilmicin R

Ciprofloxacin R

Cotrimoxazole R

Minocycline R

Polymyxin B S
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multiple classes of antibiotics.34,35 It also has different
chromosomal β-lactamases and acquired β-lactamases,
including those that can hydrolyse carbapenems.36,37

Fortunately, the relatively new antibiotic, tigecycline is
active against it with activity in strains that are resistant to
imipenem and other antibiotics.38,39 Local data suggest
good in vitro activity against multi-resistant strains of
Enterobacteriaceae, with but more variable activity against
multi-resistant strains of Acinetobacter spp.40 Clinical
experience is, however, modest and the low achievable
serum concentrations of tigecycline at recommended doses
is a concern.41 The emergence of resistant strains of
A. baumannii while on therapy highlights the risks.41,42

Some experts have suggested using combinations of
different antibiotics, which individually is ineffective.
Preclinical data, however, are mixed and uncertain and
clinical evidence is even more limited.

Other Gram-negative Bacteria
Besides P. aeruginosa and A. baumannii, other ESBL

producing organisms also pose a threat in our public
hospitals. These organisms are frequent causes of infections
in hospitalised patients. The ESBL they produced are
enzymes that confer resistance to most β-lactam antibiotics,
including penicillins, cephalosporins and monobactam
aztreonam. High rates of ESBL-producing isolates
are already found in Singapore hospitals as mentioned
earlier.2,8,9

The ESBL family is heterogeneous and is found
exclusively in gram-negative organisms, primarily in
Klebsiella pneumoniae and Escherichia coli, but also in
others. They are frequently plasmid encoded and these
plasmids carry genes encoding resistance to other drug
classes (i.e. aminoglycosides, quinolones, trimethoprim-
sulfamethoxazole).43 Therefore, antibiotic options in the
treatment of ESBL-producing pathogens are extremely
limited.

For the usual TEM or SHV-related ESBL β-lactamases
(derivatives of the originally described enzymes44), β-
lactamase inhibitors such as tazobactam do have in vitro
activity but such activity is influenced by the bacterial
inoculums and dosing of the drug. There are several other
varieties of ESBLs, such as the CTX-M β-lactamases
which have a similar spectrum of activity but are not
derivatives of the original TEM or SHV.45 These CTX-M
β-lactamases have now been found in many different
Enterobacteriaceae, including Salmonella, and are the
most prevalent ESBL type worldwide.45 Other types of
ESBLs are less common.

Currently, carbapenems are considered the best treatment
option for infections caused by such organisms, especially
in treating serious infections.6,46 Some experts are of the

opinion that piperacillin/tazobactam should be deemed as
an alternative treatment option in the light of limited
options available.47,48 Cefepime too has also been advocated
as the probability of attaining the time above the minimum
inhibitory concentration is higher than with other
antimicrobials.49 Nevertheless, because the activities of
these 2 drugs are influenced by factors such as the bacterial
inoculums and dosing of the drug, carbapenems still need
to be used in an unstable patient. Complicating the issue is
that Enterobacteriaceae with ESBL type antibiograms
may express AmpC β-lactamases, which may in turn
confer resistance to β-lactam β-lactamase inhibitor
combinations (such as piperacillin-tazobactam).50 Finally,
while carbapenems seem to be the answer for all these
difficult infections, it must be noted that carbapenem-
hydrolysing IMP-1 β-lactamase has been reported in
Klebsiella pneumoniae from Singapore as well!51

Carbapenems will be ineffective if these IMP-1 carrying
isolates become more common.

In recent years, the availability of ertapenem to both
imipenem and meropenem has meant the ability to sparingly
use the latter 2 in non-pseudomonal settings.52 The soon-to-
be available doripenem is also warmly welcomed. However,
the use of carbapenem will favour the development of
carbapenem resistant isolates.53, 54 Finally, among extended-
spectrum β-lactamase producing Enterobacteriaceae
isolates, some can carry the carbapenem-hydrolysing β-
lactamase KPC.55 Enterobacteriaceae with KPC has now
been reported in geographically diverse locations spanning
North and South America to the Middle East.56, 57 Organisms
reported to harbour these plasmid-borne enzymes include
Escherichia coli, Klebsiella  species, Enterobacter species,
and Salmonella enterica.58 Such dissemination of KPC β-
lactamases will have grave implications in the management
of nosocomial infections. The mortality associated with
such infections is significant and outbreaks have been
reported.58 Furthermore, laboratories may mistakenly report
them as being susceptible to imipenem because it is difficult
to detect with automated susceptibility testing methods58

(fortunately, KPC harbouring isolates have yet to be reported
here in Singapore).

Quinolones have been advocated for infections due to
ESBL-producing organisms in selective settings such as
urinary tract infections. However, quinolone resistance in
Enterobacteriaceae is now found in a significant portion of
ESBL-producing isolates.59 The usual mechanisms have
been selective enzymes alterations or as part of other non-
selective changes such as efflux or porins changes. These
changes have been chromosomal mutations; but more
recently, plasmid-mediated quinolone resistance has been
reported!60 Hence, options are becoming limited. More
recently, ESBL-producing Enterobacteriaceae have
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emerged in the community setting as well.61

Discussion
From the above data presented, one can see that multidrug-

resistant non-fermenters are not uncommon in Singapore.7

Extended-spectrum β-lactamase carrying bacteria are also
widely encountered locally.2,8,9 Several outbreaks have
occurred with P. aeruginosa, and
XA. baumannii isolates, which were sensitive to polymyxin
B alone (author’s unpublished data). Studies have also
shown that the isolation of a pan-drug resistant organism is
preceded by the isolation of an organism susceptible only
to polymyxin alone.62 The treatment of those gram-negative
bacteria with almost pan-resistant phenotype is also difficult.
Hence, it is appropriate to highlight the precarious position
we are in and the therapeutic options or the lack of it now
and in the near future.

What can we do to retard the relentless progress of these
bacteria that are developing resistance? Experts are of the
opinion that antimicrobial stewardship is the key in the
prevention of antimicrobial resistance in hospitals.63 Indeed,
the appropriate and optimised use of antibiotics and proper
duration will minimise the selection of resistant bacterial
strains. Some of the measures suggested in stewardship
programmes include antibiotic cycling, education/formulary
restriction and automated computer-assisted programmes.

However, it is known that measures such as the rotation
of antibiotic classes (antibiotic cycling) has not been shown
convincingly in systematic reviews to be useful.64 In theory,
it may be a tool for limiting the selective pressures and that
resistance to any single agent and emergence of resistance
may be retarded.64,65 However, some have argued that
cycling is unlikely to reduce antibiotic resistance and may
actually promote higher selection pressure according to
mathematical models.66,67 Others suggest that antibiotic
heterogeneity may be more effective in slowing the spread
of resistance but all these are options that need to be further
explored. Formulary restriction may sometimes promote
the emergence of pathogens with new resistance profiles.
Automated protocols such as computer-assisted
programmes have been used to improve antibiotic
utilisation.68 However, the possible effect of antibiotic
resistance in such programme is unclear at this point in
time.

Treatment options ahead may be in combination therapy
and this will be discussed in depth in a separate paper in this
edition of the Annals. Distant in the future, our hope rests
on novel approaches to augment the rapidly depleting
antibiotic “pipeline”. There may also be some help coming
from vaccines of which several against P. aeruginosa are
under development. The immunodominant surface-
expressed epitopes could be the targets of these vaccines.

It is thus theoretically possible to target these multidrug-
resistant organisms when they first colonise the human
host.69 Inhibition of virulence factors and inhibition of
signalling (i.e. quorum sensing) are among other ways to
combat these pathogens but none of these are anywhere
near advanced clinical trials.70 In the meantime, we will
have to rely on good infection control measures and
appropriate antibiotics usage.

Conclusion
The worst consequence of increasing antimicrobial

resistance is therapeutic failure. If we do not turn this tide
of increasing resistance around, there will be perilously
few antibiotic choices left. We will be forced to use more
and more antimicrobial agents to cover the possibility that
we may be dealing with resistant organisms, especially in
intensive care units among critically ill patients, adding
substantially to the cost of patient care and possibly creating
more selective pressure.

Without a doubt, we are approaching the “post-antibiotic
era” and the threat from these organisms is not quite in the
future but in the present moment. The 2 most influential
infectious disease societies today, the Infectious
Diseases Society of America (IDSA) and the European
Society of Clinical Microbiology and Infectious Diseases
(ESCMID) are both deeply worried.71,72 We should be
equally concerned too.
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