Susceptibility of Multi-resistant Gram-negative Bacilli in Singapore to Tigecycline as Tested by Agar Dilution
Thean-Yen Tan,1 MBbch, DTMH, MRCPath, Lily SY Ng,1 SpDip (Microbiol)

Introduction
Tigecycline is a recently developed antibiotic that belongs to the glycylocycline class with in vitro activity against most Gram-negative bacteria, other than Pseudomonas aeruginosa. This study investigated the in vitro activity of tigecycline against multi-resistant isolates of Enterobacteriaceae and Acinetobacter spp. isolated from clinical specimens in Singapore. Materials and Methods: Minimum inhibitory concentrations (MICs) to tigecycline were determined for 173 isolates of multi-resistant Escherichia coli, Klebsiella spp., Enterobacter spp. and Acinetobacter spp. using agar dilution. Results: The MIC required to inhibit the growth of 90% of organisms varied from 0.5 to 4 mg/L for the study isolates. Based on a resistance breakpoint of ≥ 8 mg/L, resistance rates varied from 0% to 9%. Conclusions: Tigecycline demonstrates good in vitro activity against multi-resistant strains of Enterobacteriaceae, with more variable activity against multi-resistant strains of Acinetobacter spp.

Key words: Acinetobacter baumannii, Enterobacteriaceae, Microbial sensitivity tests

Materials and Methods
Collection of Isolates
Isolates of E. coli, Klebsiella spp., Enterobacter spp. and Acinetobacter spp. were selected from an existing bank of organisms collected retrospectively over a 2-year period starting from 2004. Only 1 unique isolate per patient was included for testing. Test strains were previously identified using conventional biochemical tests. Disc susceptibility testing was performed and interpreted according to Clinical Laboratory Standards Institute (CLSI) guidelines for the following antibiotics: amikacin, amoxicillin-clavulanate (ampicillin-sulbactam for Acinetobacter spp.), aztreonam, cefepime, ciprofloxacin, ceftazidime, gentamicin, impenem,

1 Laboratory Medicine Services, Changi General Hospital, Singapore
Address for Correspondence: Dr Tan Thean Yen, Laboratory Medicine Services, Changi General Hospital, 2 Simei Street 3, Singapore 529889.
Email: thean_yen_tan@cgh.com.sg

Ann Acad Med Singapore 2007;36:807-10

Original Article
minocycline, piperacillin-tazobactam and trimethoprim-sulphamethoxazole. The presence of ESBL in *E. coli* and *Klebsiella* spp. was inferred either by the double-disk approximation method,\(^9\) or by the confirmatory tests as recommended by the CLSI.\(^10\)

For the purposes of this study, isolates were defined as multi-drug resistant when they demonstrated diminished susceptibility to >1 of drug classes tested in the susceptibility testing panel.\(^11\)

Antimicrobial Susceptibility Testing

Minimum inhibitory concentrations (MICs) to tigecycline were obtained by agar dilution, performed according to CLSI guidelines.\(^10\) Tigecycline antibiotic powder (Wyeth, USA) in solution was added to molten Mueller-Hinton II agar (Becton-Dickinson, Maryland, USA), to provide 2-fold doubling concentrations (range, 0.016 to 16 mg/L). Plates for agar dilution were freshly prepared on each day of testing. Bacterial suspensions prepared from overnight cultures were adjusted to yield a final test inoculum of 10^4 colony forming units and applied to agar plates using a multi-point inoculator (Mast Diagnostics, England). Following incubation at 35°C for 16 to 20 hours for Enterobacteriaceae, and 20 to 24 hours for *Acinetobacter* spp., plates were inspected for growth. The presence of a single colony or a faint residual haze was disregarded. The lowest concentration of antibiotic that showed no bacterial growth was recorded as the MIC. Quality control was performed concurrently with each batch of testing using *E. coli* ATCC 25922 and *Enterococcus faecalis* ATCC 29212. Quality control results obtained were within specified limits.\(^8\)

Results

One hundred and seventy-three isolates were included in the study, comprising *Acinetobacter* spp. (n = 55), *E. coli* (n = 19), *Enterobacter* spp. (n = 35) and *Klebsiella* spp. (n = 64). One hundred and sixty-six (96%) isolates were defined as multi-resistant, and 16 isolates were resistant to all tested antibiotics. Ninety per cent to 95% of *Klebsiella* spp. and *E. coli* were positive for ESBL production. The full susceptibility profile of the tested organisms is listed in Table 1.

The MIC values for tigecycline as obtained by agar dilution are shown in Table 2. There is currently no interpretative breakpoint available from the CLSI for tigecycline. Based on the breakpoints recommended by the US Food and Drug Administration for Enterobacteriaceae (susceptible \(\leq 2\) mg/L, resistant \(\geq 8\) mg/L), no tigecycline-resistant *E. coli* isolates were detected, while 4 (6%) isolates of *Klebsiella* spp. and 1 (3%) isolates of *Enterobacter* spp. were classified as resistant. At present, there are no interpretative breakpoints available for *Acinetobacter* spp. If the same interpretative criteria for Enterobacteriaceae are arbitrarily applied, 5 (9%) of the tested *Acinetobacter* spp. were resistant.

Discussion

The results of this study show that tigecycline displays *in vitro* activity against antibiotic-resistant strains of *E. coli*, *Klebsiella* spp., *Enterobacter* spp. and *Acinetobacter* spp. However, interpretation of categorical susceptibility is hampered by the lack of formal breakpoint recommendations. The FDA has recommended susceptibility breakpoints for Enterobacteriaceae (MIC \(\leq 2\) mg/L), while European consensus statements suggest using a lower

Table 1. Antibiotic Susceptibility for Study Organisms

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Enterobacteriaceae</th>
<th>Acinetobacter spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%R</td>
<td>%I</td>
</tr>
<tr>
<td>Amikacin</td>
<td>31.4</td>
<td>15.7</td>
</tr>
<tr>
<td>Amoxicillin/Clavulanic acid</td>
<td>86.5</td>
<td>11.2</td>
</tr>
<tr>
<td>Ampicillin/Sulbactam</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>87.7</td>
<td>6.2</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>92.9</td>
<td>7.1</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>82.2</td>
<td>5.9</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>62.7</td>
<td>4.2</td>
</tr>
<tr>
<td>Imipenem</td>
<td>5.1</td>
<td>0</td>
</tr>
<tr>
<td>Minocycline</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Piperacillin/Tazobactam</td>
<td>50.8</td>
<td>23.7</td>
</tr>
<tr>
<td>Trimethoprim/Sulfamethoxazole</td>
<td>78</td>
<td>3.4</td>
</tr>
</tbody>
</table>

%I: % of isolates of intermediate susceptibility; %R: % of resistant isolates; %S: % of susceptible isolates; NT: not tested
breakpoint for susceptibility (MIC ≤1 mg/L). There are currently no interpretative breakpoints available for *Acinetobacter* spp. Based on the MIC distributions for our selected bacterial population, tigecycline has reduced *in vitro* activity against multi-resistant *Acinetobacter* spp.

The MIC required to inhibit the growth of 90% of organisms (MIC$_{90}$) is higher for *Klebsiella* spp. and *Enterobacter* spp. in our study than those reported from other geographic regions. A recent study reported a trend towards higher tigecycline MIC values when testing antibiotic-resistant Gram-negative bacilli. Similarly, the MIC$_{90}$ for *Acinetobacter baumannii* ranges from 2 to 8 mg/L, depending on the strains tested. However, other possible explanations for the higher MIC$_{90}$ values include the use of unique but banked isolates collected from a single institution over a 2-year period, or geographic variations in antibiotic susceptibility.

In contrast to the microbroth dilution testing methods commonly used for *in vitro* susceptibility testing, agar dilution was used in this study. There is limited data to show that the MIC obtained by agar dilution is lower than that obtained by broth dilution techniques. Tigecycline is susceptible to the effects of oxidative reduction, and results of broth testing are affected by the age of the Mueller-Hinton broth used. A similar effect was noted during the course of the agar dilution in this study. MIC values of control strains increased following overnight storage of pre-poured agar dilution plate (data not shown). Storing prepared agar plates in anaerobic conditions mitigated this effect. Reading the agar dilution MIC endpoints was complicated by the presence of trailing endpoints, which was particularly apparent in *Acinetobacter* spp. A few test isolates demonstrated the presence of a fine haze on agar plates at the MIC endpoint.

In conclusion, the results of this study confirm that tigecycline retains *in vitro* activity against multi-resistant strains of Enterobacteriaceae. The data from this study suggest that local *in vitro* susceptibility testing should always be performed, as local susceptibility rates may differ from those reported in other epidemiological studies.

Acknowledgements

This study was made possible by a research grant from Wyeth Pharmaceuticals.

REFERENCES

10. Clinical Laboratory Standards Institute. Performance Standards for

Table 2. Distribution of Tigecycline MICs

<table>
<thead>
<tr>
<th>Organism</th>
<th>Break-points No.</th>
<th>R (%)</th>
<th>I (%)</th>
<th>S (%)</th>
<th>MIC$_{50}$</th>
<th>MIC$_{90}$</th>
<th>MIC range</th>
<th>mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klebsiella spp.</td>
<td>S≤2 R≥8</td>
<td>64</td>
<td>4 (6%)</td>
<td>7 (11%)</td>
<td>53 (83%)</td>
<td>2</td>
<td>4</td>
<td>0.5-16</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>S≤2 R≥8</td>
<td>19</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>19 (100%)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.25-0.5</td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>S≤2 R≥8</td>
<td>35</td>
<td>1 (3%)</td>
<td>1 (3%)</td>
<td>33 (94%)</td>
<td>1</td>
<td>2</td>
<td>0.25-16</td>
</tr>
<tr>
<td>Acinetobacter spp.</td>
<td>S≤2 R≥8</td>
<td>55</td>
<td>5 (9%)</td>
<td>11 (20%)</td>
<td>39 (71%)</td>
<td>2</td>
<td>4</td>
<td>0.25-16</td>
</tr>
</tbody>
</table>

FDA published breakpoints – I: intermediate; R: resistant; S: susceptible
MIC: minimum inhibitory concentration

